Auf Tuchfühlung mit dem doppelt-magischen Nickel 78Ni

Mit dem ISOLTRAP Massenspektrometer können instabile Kerne vermessen werden © Uta Bilow

Atomkerne mit einer „magischen“ Anzahl an Neutronen oder Protonen sind besonders stabil, wobei Zahlen wie 8, 20, 28, 50, 82 oder 126 als magisch gelten. Diese Kerne besitzen eine hohe Kernbindungsenergie. Daher spielen sie bei der Elemententstehung in Sternen eine besondere Rolle, wenn durch Fusionsprozesse oder Sternexplosionen neue Kerne gebildet werden.

Von großem Interesse für die Kernphysik ist das Nickelisotop 78Ni mit 28 Protonen und 50 Neutronen, denn es ist möglicherweise ein sogenannter Wartepunkt mit erhöhter Lebensdauer, der die Bildung schwererer Kerne begünstigt. Durch Fusionsprozesse in Sternen sind lediglich die chemischen Elemente bis zum Eisen zugänglich.

Schwerere Elemente wie Kupfer, Zink, Gold oder Uran bilden sich erst bei einer Sternenexplosion, der sogenannten Supernova, oder aus kollidierenden Neutronensternsystemen. Allerdings ist es bislang nicht gelungen, die Kernbindungsenergie des Isotops 78Ni direkt zu messen – einen jener Parameter, deren Werte Aufschluss darüber geben, mit welcher Wahrscheinlichkeit ein Element beim Sterben eines Sterns erzeugt wird und wie wichtig dieser Produktionspfad somit im Allgemeinen für die Bildung schwerer Kerne ist.

Die beiden Forscher vom Institut für Kern- und Teilchenphysik der TU Dresden, Dipl.-Phys. Andree Welker und Prof. Dr. Kai Zuber, haben nun gemeinsam mit einem internationalen Team quasi die nächsten Verwandten des Nickelisotops vermessen. Am ISOLTRAP Experiment am europäischen Forschungszentrum CERN wurden die Massen der Kupferisotope 75Cu bis 79Cu bestimmt. 79Cu unterscheidet sich von 78Ni lediglich durch ein zusätzliches Proton im Kern. Für ihre Versuche produzierten die Physiker die Nuklide, indem sie Uran mit Neutronen beschossen.

Die entstehenden Isotope wurden in ein Präzisionsmassenspektrometer gelenkt, das die einzelnen Sorten von Atomkernen sehr effektiv voneinander separieren kann. In dem Gerät, dem sogenannten Multireflexions-Flugzeitspektrometer, wird der Teilchenstrahl viele Male reflektiert, so dass die Teilchen Flugwege von mehreren hundert Metern zurücklegen. Schwere Kerne fliegen langsamer als leichte, so dass die Isotop-Sorten voneinander separiert und gemessen werden können.

Die zu untersuchenden Teilchen werden anschließend in eine sogenannte Penning-Falle gelenkt, wo man ihre Massen noch präziser bestimmen kann, sofern es ihre Lebensdauer und die Teilchenmenge zulässt. Ein Magnetfeld zwingt die Ionen in der Falle auf eine kreisförmige Bahn, wobei Elektroden verhindern, dass die Ionen dabei entkommen können. Durch Vermessen der Resonanzfrequenz lässt sich die Masse der Teilchen sehr genau bestimmen.

Wichtige Ergebnisse in diesen Untersuchungen wurden mit dem Multireflexions-Flugzeitspektrometer gewonnen, welches zur Bestimmung der Masse des kurzlebigen Kupferisotops 79Cu verwendet wurde. Von dem Isotop konnten lediglich fünf Ionen pro Sekunde produziert werden. Das Gerät ist für solche geringen Mengen von Atomkernen mit kurzen Halbwertszeiten besonders gut geeignet, denn die Messzeit ist besonders kurz. Konstruiert und gebaut wurde es an der Universität Greifswald.

Die erhaltenen Messwerte wurden mit Berechnungen von Theoretikern der Universität Straßburg verglichen und zeigten dabei eine exzellente Übereinstimmung. Somit ergibt sich ein detailliertes Bild, wie die Kernstruktur der exotischen Kupferisotope beschaffen ist. Dieses lässt den Schluss zu, dass das Isotop 78Ni eine doppelt-magische Konfiguration aufweist und damit sehr wichtig in der Produktionskette von schwereren chemischen Elementen ist.

Die Ergebnisse wurden veröffentlicht im Fachblatt Physical Review Letters, 119, 192502 (2017), doi: 10.1103/PhysRevLett.119.192502

Viewpoint der American Physical Society: https://physics.aps.org/articles/v10/121

Informationen für Journalisten:
Dipl.-Phys. Andree Welker und
Prof. Kai Zuber (Leiter der Dresdner Arbeitsgruppe)
TU-Dresden, Institut für Kern- und Teilchenphysik
Tel.: +49 (0) 351 463-42250
andree.welker@cern.ch
kai.zuber@tu-dresden.de

Dipl.-Phys. Frank Wienholtz und
Prof. Lutz Schweikhard (Leiter der Greifswalder Arbeitsgruppe)
Institut für Physik der Universität Greifswald
Tel.: +49 (0) 3834 4204700
wienholtz@physik.uni-greifswald.de
lschweik@physik.uni-greifswald.de

Prof. Klaus Blaum (Sprecher der ISOLTRAP-Kollaboration)
Max-Planck-Institut für Kernphysik
Tel.: +49 (0) 6221 516850
klaus.blaum@mpi-hd.mpg.de

https://tu-dresden.de/mn/physik/iktp
http://www.physik.uni-greifswald.de
http://www.mpi-hd.mpg.de/blaum/index.de.html

Media Contact

Kim-Astrid Magister idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer