Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Atom- und Molekülspektren im extremen Magnetfeld von Weißen Zwergen werden berechenbar

31.05.2017

Neue quantenchemische Methode schafft Grundlagen zur Identifikation von Atomen und Molekülen im Magnetfeld von Weißen Zwergen

Wenn Sterne ihre Energie verbraucht haben und sterben, werden sie in der Regel zu einem Weißen Zwerg. 10 bis 20 Prozent dieser Weißen Zwerge besitzen ein extrem starkes Magnetfeld, das bis zu 100.000 Tesla erreichen kann. Wie sich Atome und Moleküle in einem solchen Magnetfeld verhalten, ist bisher weitgehend unbekannt, besonders für die Astrophysik aber von großem Interesse.


Aufnahme eines sterbenden Sterns durch das Hubble-Weltraumteleskop: Während der Stern abkühlt und schrumpft, um dann ein Weißer Zwerg zu werden, stößt er seine Gashülle ab, die einige hunderttausend Jahre lang als planetarischer Nebel zu sehen ist.

Foto/©: NASA

Wissenschaftler der Johannes Gutenberg-Universität Mainz (JGU) haben nun eine quantenchemische Methode entwickelt, um die Eigenschaften von Atomen und Molekülen in starken Magnetfeldern vorherzusagen. Anhand ihrer Berechnungen können sie theoretische Spektren erstellen, mit denen Astrophysiker die tatsächlich beobachteten Spektrallinien eines Weißen Zwergs vergleichen und analysieren können.

Starke Magnetfelder verändern die Elektronenstruktur von Atomen und Molekülen radikal. Weil aber solche starken Magnetfelder auf der Erde nicht erzeugt werden können, ist wenig darüber bekannt, wie sich Atome und Moleküle unter diesen Bedingungen tatsächlich verhalten, wie sie genau aufgebaut sind und welche Eigenschaften sie besitzen.

Insbesondere die Astrophysik interessiert sich für neue Daten auf diesem Gebiet, um die beobachteten elektromagnetischen Spektren von Weißen Zwergen zu interpretieren und damit Atome und Moleküle in ihrer Atmosphäre zu identifizieren. „Die Astrophysik benötigt theoretische Vorhersagen, weil sich die Spektren in einem Magnetfeld sehr stark verändern“, erklärt Dr. Stella Stopkowicz vom Institut für Physikalische Chemie der JGU.

Laborversuche können in solchen Fällen nicht herangezogen werden, weil selbst mit starken Magneten auf der Erde zerstörungsfrei höchstens 100 Tesla zu erreichen sind. Zum Beispiel ist das Magnetfeld der Erde etwa 60 Mikrotesla stark. Die Magnetresonanztomographie (MRT) zur medizinischen Bildgebung arbeitet mit Feldstärken zwischen 1,5 und 10 Tesla.

Theoretische Vorhersagen auch für elektronenreichere Atome und Moleküle

Bei nichtmagnetischen Weißen Zwergen konnten durch den Vergleich mit Laborergebnissen bereits verschiedene Atome und Moleküle identifiziert werden. Auch bei magnetischen Weißen Zwergen wurden bereits die Elemente Wasserstoff und Helium nachgewiesen. Die bislang für theoretische Vorhersagen verwendete quantenchemische Methode ist allerdings im Hinblick auf die Computerrechenzeit so teuer, dass sie für elektronenreichere Atome oder für Moleküle nicht praktikabel ist.

Von nichtmagnetischen Weißen Zwergen ist bekannt, dass auf ihnen auch andere Elemente wie Kohlenstoff, Silizium, Phosphor und Schwefel sowie vermutlich kleine Kohlenwasserstoffverbindungen vorkommen. Man weiß außerdem, dass Magnetfelder dazu tendieren, die Bindungsenergie von Molekülen zu erhöhen. Daher ist es wahrscheinlich, dass diese Atome und Moleküle auch bei magnetischen Weißen Zwergen zu finden sind.

Basis für entsprechende theoretische Vorhersagen ist die „Equation-of-Motion Coupled-Cluster“-Methode, die sich für den feldfreien Fall in quantenchemischen Berechnungen bewährt hat und die Florian Hampe und Stella Stopkowicz für die Behandlung von Atomen und Molekülen in einem Magnetfeld angepasst haben. Damit eröffnen sich neue Möglichkeiten, Grundlagenforschung für Atome und Moleküle in starken Magnetfeldern zu betreiben.

So wurde vor Kurzem eine völlig neue, dritte Form chemischer Bindungen – neben den beiden bekannten Formen der kovalenten Bindung und der Ionenbindung – entdeckt, die nur unter dem Einfluss eines starken Magnetfeldes auftritt und als „Perpendicular Paramagnetic Bonding“ bezeichnet wird. „Diese exotische Bindungsform konnte bisher auf der Erde nicht nachgewiesen werden, kann aber mit der neuen Methode genauer untersucht werden“, so Stopkowicz. „Wird ein Molekül in einem starken Magnetfeld stabiler oder wird es zerstört und welche Bindungen geht es ein? Es gibt dazu noch viele offene Fragen.“

Foto:
http://www.uni-mainz.de/bilder_presse/09_phys_chemie_magnetfeld.jpg
Aufnahme eines sterbenden Sterns durch das Hubble-Weltraumteleskop: Während der Stern abkühlt und schrumpft, um dann ein Weißer Zwerg zu werden, stößt er seine Gashülle ab, die einige hunderttausend Jahre lang als planetarischer Nebel zu sehen ist.
Foto/©: NASA

Veröffentlichung:
Florian Hampe, Stella Stopkowicz
Equation-of-motion coupled-cluster methods for atoms and molecules in strong magnetic fields
The Journal of Chemical Physics, 18. April 2017
DOI: 10.1063/1.4979624

Weitere Information:
Dr. Stella Stopkowicz
Arbeitsgruppe Theoretische Chemie
Institut für Physikalische Chemie
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-22706
Fax +49 6131 39-23895
E-Mail: stella.stopkowicz@uni-mainz.de
http://www.tc.uni-mainz.de/eng/304.php

Weitere Links:
http://aip.scitation.org/doi/10.1063/1.4979624 (Article)
https://publishing.aip.org/publishing/journal-highlights/new-method-can-model-ch...

Petra Giegerich |

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie