Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Atmosphärische Schwerewellen in neuen Satelliten-Aufnahmen entdeckt

02.12.2015

Einem internationalen Forscherteam unter Beteiligung Jülicher Wissenschaftler sind detaillierte Beobachtungen von Störungen in der mittleren und oberen Erdatmosphäre gelungen, die beispielsweise durch Luftströmungen entstehen. Mithilfe von Infrarot-Aufnahmen zweier verschiedener NASA-Umwelt-Satelliten beobachteten sie die Ausbreitung dieser atmosphärischen Schwerewellen vom Erdboden bis zur Mesosphäre in 90 Kilometer Höhe. Die Aufnahmen liefern einen wichtigen Baustein zur Verbesserung zukünftiger Klimamodelle. Die Ergebnisse veröffentlichten die Forscher jetzt in der amerikanischen Fachzeitschrift PNAS (DOI: 10.1073/pnas.1508084112)

Schwerewellen sind Störungen in der Atmosphäre, die durch eine Reihe von Phänomenen in der unteren Atmosphäre erzeugt werden, unter anderem durch Luftströmungen über Bergen oder durch hochreichende Konvektion bei starken Gewittern oder tropischen Stürmen.


Hochreichende Konvektion verursacht konzentrische Schwerewellen: (A) Infrarotaufnahmen der Visible Infrared Imaging Radiometer Suite (VIIRS) an Bord des Satelliten Suomi-NPP zeigen schwere Gewitter in Südtexas am 4. April 2014. (B) Zugehörige Nightglow-Aufnahme des DNB-Sensors. Neben den hellen Flecken der beleuchteten Städte sind Blitze als Streifen zu erkennen (oben rechts). Schwerewellen erzeugen ein gut definiertes konzentrisches Muster, welches vom Zentrum des Gewitters ausgeht.

Copyright: St. D. Miller, W.C. Straka III, J. Yue, St. M. Smith, M. J. Aleaxander, L. Hoffmann, M. Setvák, P. T. Partain (DOI: 10.1073/pnas.1508084112)

"Besonders interessant ist, dass selbst Vulkanausbrüche Schwerewellen erzeugen können" erklärt Lars Hoffmann vom Jülich Supercomputing Centre. Dies hat die Studie zum ersten Mal nachgewiesen. Die beobachteten Strukturen, die mitunter wie Wellen in einem Teich anmuten, beeinflussen Winde, Temperaturen und die chemische Zusammensetzung der mittleren und oberen Erdatmosphäre.

Die Entdeckung der atmosphärischen Schwerewellen war ein unverhoffter Glücksfall für die Wissenschaftler. Der "Day/Night Band" (DNB) Sensor an Bord des NASA-Umwelt-Satelliten Suomi-NPP wurde entwickelt, um erstmals Abbildungen von nächtlichen Wolkenformationen aus dem All zu ermöglichen. Doch seine extreme Lichtempfindlichkeit führte zu einer weiteren Entdeckung:

Im Bereich der Mesosphäre verursachen verschiedene photochemische Effekte eine schwache Strahlung im infraroten Bereich, die als Nightglow oder Airglow bekannt ist. Atmosphärische Schwerewellen beeinflussen diese Strahlung und sind so anhand ihrer typischen Muster direkt in den Infrarot-Aufnahmen des DNB-Sensors zu erkennen. Die Pixelgröße der Abbildungen beträgt 740 mal 740 Meter, eine für Satellitenaufnahmen dieser Art bisher unerreichte Auflösung.

Die Daten des DNB-Sensors wurden mit denen eines weiteren Infrarot-Messgeräts an Bord des NASA-Satelliten Aqua kombiniert. Der "Atmospheric Infrared Sounder" (AIRS) beobachtet Schwerewellen in der Stratosphäre in 30 bis 40 Kilometern Höhe. Nachdem die Daten der beiden Satelliten-Experimente zusammen geführt wurden, können die Wissenschaftler die Ausbreitung der Schwerewellen durch verschiedene Höhenschichten der Atmosphäre verfolgen.

Damit erhalten sie wichtige Einblicke in Prozesse, die für die Zirkulation in der oberen Atmosphäre verantwortlich sind und genauere Vorhersagen von langfristigem Klimaverhalten ermöglichen. Das Klima-Simlab im Jülich Supercomputing Centre hat die AIRS-Daten im Hinblick auf klimarelevante Prozesse bearbeitet und analysiert.

SchwerewellenHochreichende Konvektion verursacht konzentrische Schwerewellen: (A) Infrarotaufnahmen der Visible Infrared Imaging Radiometer Suite (VIIRS) an Bord des Satelliten Suomi-NPP zeigen schwere Gewitter in Südtexas am 4. April 2014. (B) Zugehörige Nightglow-Aufnahme des DNB-Sensors. Neben den hellen Flecken der beleuchteten Städte sind Blitze als Streifen zu erkennen (oben rechts). Schwerewellen erzeugen ein gut definiertes konzentrisches Muster, welches vom Zentrum des Gewitters ausgeht.

Copyright: St. D. Miller, W.C. Straka III, J. Yue, St. M. Smith, M. J. Aleaxander, L. Hoffmann, M. Setvák, P. T. Partain (DOI: 10.1073/pnas.1508084112)


Weitere Informationen:

Forschungszentrum Jülich

Jülich Supercomputing Centre

Originalveröffentlichung PNAS "Upper atmospheric gravity wave details revealed in nightglow satellite imagery"

Pressemitteilung Colorado State University "Colorado State leads gravity waves study with satellite 'nightglow' observations"

Environmental Research Web "Satellite sensor unexpectedly detects gravity waves in upper atmosphere"


Ansprechpartner:

Dr. Lars Hoffmann
Jülich Supercomputing Centre
Forschungszentrum Jülich
Tel.: 02461 61-1978
l.hoffmann@fz-juelich.de

Pressekontakt:

Dr. Regine Panknin
Unternehmenskommunikation
Forschungszentrum Jülich
Tel.: 02461 61-9054
r.panknin@fz-juelich.de

Dr. Regine Panknin | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2015/15-12-01schwerewellen.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Magnetische Kontrolle per Handzeichen: Team entwickelt elektronische „Haut“ für virtuelle Realität
22.01.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

 
VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
Weitere B2B-VideoLinks
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen