Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Astrophysiker der Universität Wien halten erstmals Materialsturz auf Stern fest

28.10.2014

Armin Liebhart und Manuel Güdel, beide Astrophysiker an der Universität Wien, haben mit ihrem Team Hochenergieprozesse in der Umgebung eines entstehenden Sterns mitverfolgt. Dabei handelt es sich um gewaltige Ausbrüche von Strahlung und Masse, die bei der Entstehung von Sternen eine fundamentale Rolle spielen.

Mit Hilfe des XMM-Newton-Röntgenobservatoriums der ESA und des Chandra-Röntgenobservatoriums der NASA konnten die Astrophysiker erstmals bisher nur indirekt nachgewiesene Masseströme auf einen jungen Stern aufzeigen, indem sie direkt die Abschattung des Röntgenlichts durch die gewaltigen Gas-Massen nachwiesen. Aktuell publizieren sie dazu in Astronomy & Astrophysics.


Beim FUor-Ausbruch erhitzt sich die Scheibe beim Stern sehr stark und wird um ein Vielfaches heller als der gesamte Stern. Eine große Menge Gas fließt nun innerhalb kurzer Zeit zum Stern hinunter.

(Copyright: ESO/L. Calçada: http://www.eso.org/public/images/eso0942a/)

Bei der Entstehung eines Sterns aus ausgedehnten Gaswolken bilden sich im Verlauf der ersten Millionen Jahre ausgedehnte Gas- und Staubscheiben um den langsam wachsenden Stern. Diese Scheiben können so groß wie unser Sonnensystem werden. Gleichzeitig zieht der Stern von dieser Scheibe Materie an.

Die Beobachtungen von Spektren junger Sterne zeigen, dass ein ständiger Massestrom für den Aufbau eines Sterns in der Größe unserer Sonne bis zu 10 Millionen Jahre bräuchte. Jedoch bilden sich die Sterne innerhalb weniger als einer Million Jahre, und die Scheiben verschwinden erfahrungsgemäß bereits nach wenigen Millionen Jahren.

Spektakuläre Himmelsereignisse

"Seit langem wird deshalb spekuliert, dass gelegentliche gewaltige Instabilitäten in den Scheiben sehr große Mengen an Material in kurzer Zeit auf den Stern hinunter stürzen lassen. Diese episodischen Ereignisse würden sich bei jedem jungen Stern eventuell nur ein bis zwei Dutzend Mal im Abstand von Tausenden von Jahren ereignen, aber einen signifikanten Teil der Scheibe entfernen", erklärt Manuel Güdel, Professor am Institut für Astrophysik der Universität Wien. Damit gewinnt nicht nur der Stern an Masse – auch die in den Scheiben vor sich gehende Entstehung von Planeten wird dadurch erheblich beeinflusst.

Solche seltenen Ereignisse wurden in den letzten 80 Jahren tatsächlich bei einem knappen Dutzend Sternen je einmal beobachtet, und jedes Ereignis dauert Jahrzehnte an. Sie werden nach dem 1937 ausgebrochenen Prototypen auch FU Orionis-Ausbrüche oder "FUors" genannt. Diese Vorfälle sind spektakulär und weisen darauf hin, dass die ganze Sternumgebung verändert wird und die sonst kühlen Scheiben auf Temperaturen wie die der Sonnenoberfläche aufgeheizt werden. Das Licht des Objektes wird dadurch mindestens zehn bis 100 Mal heller.

FUor-Ausbruch mit ESA-Ausnahmegenehmigung beobachtet

Im Jahr 2010 wurde nach langem Warten der jüngste FUor-Ausbruch entdeckt, bei einem sich bildenden Stern namens HBC 722 im Gebiet des Nordamerikanebels im Sternbild Schwan. Manuel Güdel und Armin Liebhart von der Universität Wien und ihr Team ließen sich die Gelegenheit nicht entgehen. Sie holten eine Ausnahmebewilligung von der Leitung des XMM-Newton-Röntgenobservatoriums der ESA ein, damit der Stern schon in seiner Anfangsphase ohne lange Verzögerung zweimal in den Jahren 2010 und 2011 beobachtet werden konnte. Dem Team gelang schließlich 2013 mit dem NASA-Röntgenobservatorium Chandra eine weitere Nachbeobachtung.

"Obschon drei früher ausgebrochene FUors in ihrer späten Abklingphase auch im Röntgenlicht nachgewiesen werden konnten, gelang es uns jetzt zum ersten Mal, die bewegte Anfangsphase eines Ausbruchs aufzunehmen", so Armin Liebhart, Doktorand in Güdels Gruppe an der Universität Wien.

Überraschende Beobachtungen in der Anfangsphase des Sterns

Diese erstmaligen und einzigartigen Beobachtungen zeigten komplett unvorhergesehene Eigenschaften. Die erste Beobachtung während des anfänglichen raschen Ausbruchs wies zwar keine Röntgenstrahlung auf – möglicherweise gab es massereiche Gasströme zwischen Stern und Scheibe, die alles Röntgenlicht vom Stern absorbierten. Die zweite Beobachtung ein halbes Jahr später dagegen zeigt eine Röntgenquelle, wie man sie für einen derartigen Stern erwartet – nämlich eine heiße Röntgenkorona ähnlich der Sonnenkorona. Die Gasströme waren anscheinend bereits abgeklungen.

Zwei Jahre später hatte sich der Ausbruch jedoch erneut verstärkt. Die jetzt zehnmal stärkere Röntgenquelle wurde aber durch eine im Vergleich zu vorher bis zu hundertfach größere Menge an Gas sehr stark abgeschwächt. Die Beobachtung zeigte zusätzlich, dass das Gas sehr heiß sein musste, weil der üblicherweise enthaltene Staub verdampft war. Die bisher vorausgesagten Masseströme auf den Stern wurden jetzt direkt durch ihre Abschattung des Röntgenlichtes nachgewiesen. Eine Abschätzung der Gasmenge liefert die vorhergesagten Ergebnisse. Nicht auszuschließen sind auch Gasströme, die von der Scheibe in Form eines schnellen Windes ausströmen.

Die neuen Erkenntnisse über diese seltenen Ereignisse sind von größter Wichtigkeit für unser Verständnis der Stern- und Planetenentstehung. Da der Ausbruch über viele Jahre weiter andauern dürfte, haben die beiden Projektleiter bereits wieder neue XMM-Newton-Beobachtungszeit für zusätzliche Nachfolgebeobachtungen beantragt.

Publikation in Astronomy & Astrophysics (Letter to the Editor):
X-ray emission from an FU Orionis star in early outburst: HBC 722: Armin Liebhart, Manuel Güdel, Stephen L. Skinner, Joel Green. Astronomy & Astrophysics, 570, L11 (2014). DOI: 10.1051/0004-6361/201424841

Wissenschaftliche Kontakte
Univ.-Prof. Dipl.-Phys. Dr. Manuel Güdel
Institut für Astrophysik
Universität Wien
1180 Wien, Türkenschanzstr. 17
T +43-1-4277-538 14
M +43-664-60277-538 14
manuel.guedel@univie.ac.at

Mag. Armin Liebhart
Institut für Astrophysik
Universität Wien
1180 Wien, Türkenschanzstr. 17
+43-1-4277-538 16
armin.liebhart@univie.ac.at

Rückfragehinweis
Mag. Veronika Schallhart
Pressebüro der Universität Wien
Forschung und Lehre
Universität Wien
1010 Wien, Universitätsring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 15 Fakultäten und vier Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.900 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. 1365 gegründet, feiert die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum. www.univie.ac.at

Veronika Schallhart | Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte