Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Astrophysiker der Universität Wien halten erstmals Materialsturz auf Stern fest

28.10.2014

Armin Liebhart und Manuel Güdel, beide Astrophysiker an der Universität Wien, haben mit ihrem Team Hochenergieprozesse in der Umgebung eines entstehenden Sterns mitverfolgt. Dabei handelt es sich um gewaltige Ausbrüche von Strahlung und Masse, die bei der Entstehung von Sternen eine fundamentale Rolle spielen.

Mit Hilfe des XMM-Newton-Röntgenobservatoriums der ESA und des Chandra-Röntgenobservatoriums der NASA konnten die Astrophysiker erstmals bisher nur indirekt nachgewiesene Masseströme auf einen jungen Stern aufzeigen, indem sie direkt die Abschattung des Röntgenlichts durch die gewaltigen Gas-Massen nachwiesen. Aktuell publizieren sie dazu in Astronomy & Astrophysics.


Beim FUor-Ausbruch erhitzt sich die Scheibe beim Stern sehr stark und wird um ein Vielfaches heller als der gesamte Stern. Eine große Menge Gas fließt nun innerhalb kurzer Zeit zum Stern hinunter.

(Copyright: ESO/L. Calçada: http://www.eso.org/public/images/eso0942a/)

Bei der Entstehung eines Sterns aus ausgedehnten Gaswolken bilden sich im Verlauf der ersten Millionen Jahre ausgedehnte Gas- und Staubscheiben um den langsam wachsenden Stern. Diese Scheiben können so groß wie unser Sonnensystem werden. Gleichzeitig zieht der Stern von dieser Scheibe Materie an.

Die Beobachtungen von Spektren junger Sterne zeigen, dass ein ständiger Massestrom für den Aufbau eines Sterns in der Größe unserer Sonne bis zu 10 Millionen Jahre bräuchte. Jedoch bilden sich die Sterne innerhalb weniger als einer Million Jahre, und die Scheiben verschwinden erfahrungsgemäß bereits nach wenigen Millionen Jahren.

Spektakuläre Himmelsereignisse

"Seit langem wird deshalb spekuliert, dass gelegentliche gewaltige Instabilitäten in den Scheiben sehr große Mengen an Material in kurzer Zeit auf den Stern hinunter stürzen lassen. Diese episodischen Ereignisse würden sich bei jedem jungen Stern eventuell nur ein bis zwei Dutzend Mal im Abstand von Tausenden von Jahren ereignen, aber einen signifikanten Teil der Scheibe entfernen", erklärt Manuel Güdel, Professor am Institut für Astrophysik der Universität Wien. Damit gewinnt nicht nur der Stern an Masse – auch die in den Scheiben vor sich gehende Entstehung von Planeten wird dadurch erheblich beeinflusst.

Solche seltenen Ereignisse wurden in den letzten 80 Jahren tatsächlich bei einem knappen Dutzend Sternen je einmal beobachtet, und jedes Ereignis dauert Jahrzehnte an. Sie werden nach dem 1937 ausgebrochenen Prototypen auch FU Orionis-Ausbrüche oder "FUors" genannt. Diese Vorfälle sind spektakulär und weisen darauf hin, dass die ganze Sternumgebung verändert wird und die sonst kühlen Scheiben auf Temperaturen wie die der Sonnenoberfläche aufgeheizt werden. Das Licht des Objektes wird dadurch mindestens zehn bis 100 Mal heller.

FUor-Ausbruch mit ESA-Ausnahmegenehmigung beobachtet

Im Jahr 2010 wurde nach langem Warten der jüngste FUor-Ausbruch entdeckt, bei einem sich bildenden Stern namens HBC 722 im Gebiet des Nordamerikanebels im Sternbild Schwan. Manuel Güdel und Armin Liebhart von der Universität Wien und ihr Team ließen sich die Gelegenheit nicht entgehen. Sie holten eine Ausnahmebewilligung von der Leitung des XMM-Newton-Röntgenobservatoriums der ESA ein, damit der Stern schon in seiner Anfangsphase ohne lange Verzögerung zweimal in den Jahren 2010 und 2011 beobachtet werden konnte. Dem Team gelang schließlich 2013 mit dem NASA-Röntgenobservatorium Chandra eine weitere Nachbeobachtung.

"Obschon drei früher ausgebrochene FUors in ihrer späten Abklingphase auch im Röntgenlicht nachgewiesen werden konnten, gelang es uns jetzt zum ersten Mal, die bewegte Anfangsphase eines Ausbruchs aufzunehmen", so Armin Liebhart, Doktorand in Güdels Gruppe an der Universität Wien.

Überraschende Beobachtungen in der Anfangsphase des Sterns

Diese erstmaligen und einzigartigen Beobachtungen zeigten komplett unvorhergesehene Eigenschaften. Die erste Beobachtung während des anfänglichen raschen Ausbruchs wies zwar keine Röntgenstrahlung auf – möglicherweise gab es massereiche Gasströme zwischen Stern und Scheibe, die alles Röntgenlicht vom Stern absorbierten. Die zweite Beobachtung ein halbes Jahr später dagegen zeigt eine Röntgenquelle, wie man sie für einen derartigen Stern erwartet – nämlich eine heiße Röntgenkorona ähnlich der Sonnenkorona. Die Gasströme waren anscheinend bereits abgeklungen.

Zwei Jahre später hatte sich der Ausbruch jedoch erneut verstärkt. Die jetzt zehnmal stärkere Röntgenquelle wurde aber durch eine im Vergleich zu vorher bis zu hundertfach größere Menge an Gas sehr stark abgeschwächt. Die Beobachtung zeigte zusätzlich, dass das Gas sehr heiß sein musste, weil der üblicherweise enthaltene Staub verdampft war. Die bisher vorausgesagten Masseströme auf den Stern wurden jetzt direkt durch ihre Abschattung des Röntgenlichtes nachgewiesen. Eine Abschätzung der Gasmenge liefert die vorhergesagten Ergebnisse. Nicht auszuschließen sind auch Gasströme, die von der Scheibe in Form eines schnellen Windes ausströmen.

Die neuen Erkenntnisse über diese seltenen Ereignisse sind von größter Wichtigkeit für unser Verständnis der Stern- und Planetenentstehung. Da der Ausbruch über viele Jahre weiter andauern dürfte, haben die beiden Projektleiter bereits wieder neue XMM-Newton-Beobachtungszeit für zusätzliche Nachfolgebeobachtungen beantragt.

Publikation in Astronomy & Astrophysics (Letter to the Editor):
X-ray emission from an FU Orionis star in early outburst: HBC 722: Armin Liebhart, Manuel Güdel, Stephen L. Skinner, Joel Green. Astronomy & Astrophysics, 570, L11 (2014). DOI: 10.1051/0004-6361/201424841

Wissenschaftliche Kontakte
Univ.-Prof. Dipl.-Phys. Dr. Manuel Güdel
Institut für Astrophysik
Universität Wien
1180 Wien, Türkenschanzstr. 17
T +43-1-4277-538 14
M +43-664-60277-538 14
manuel.guedel@univie.ac.at

Mag. Armin Liebhart
Institut für Astrophysik
Universität Wien
1180 Wien, Türkenschanzstr. 17
+43-1-4277-538 16
armin.liebhart@univie.ac.at

Rückfragehinweis
Mag. Veronika Schallhart
Pressebüro der Universität Wien
Forschung und Lehre
Universität Wien
1010 Wien, Universitätsring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 15 Fakultäten und vier Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.900 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. 1365 gegründet, feiert die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum. www.univie.ac.at

Veronika Schallhart | Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften