Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Am Kern des Antimaterie-Rätsels

31.05.2014

Eine extrem genaue Messung des magnetischen Moments eines Protons könnte bei der Erklärung des Materieüberschusses im Universum helfen

Sekundenbruchteile nach dem Urknall entstanden Materie und Antimaterie in gleichen Mengen – um sich gegenseitig wieder auszulöschen. Doch ein kleiner Materieüberschuss überlebte und formte das uns heute bekannte Universum. Die Ursache dieses kleinen Überschusses gehört zu den größten Rätseln der Physik. Ein präziser Vergleich der Eigenschaften von Materie und Antimaterie könnte zu seiner Lösung beitragen.


Präzisionsinstrument für diffizile Messungen: Ein einzelnes Proton wird in der vergoldeten Penning-Falle gespeichert. Diese besteht aus ringförmigen Elektroden, die durch isolierende Ringe aus künstlichem Saphir getrennt sind. Aus der Schwingung des Protons in der Falle lässt sich dessen magnetisches Moment bestimmen.

© C. Rodegheri, MPI für Kernphysik

Zu diesen Eigenschaften zählt das magnetische Moment des Protons, das eine wissenschaftliche Kooperation nun so präzise wie nie zuvor bestimmt hat. Beteiligt waren daran Forscher des Max-Planck-Instituts für Kernphysik in Heidelberg. Als nächstes wollen die Wissenschaftler das magnetische Moment des Antiprotons messen. Es ist ein klitzekleiner Sprung im kosmischen Spiegel, dem wir unsere Existenz verdanken. In der heißen Geburtsphase des Universums entstanden Materie und ihr Spiegelbild, die Antimaterie, zu beinahe gleichen Anteilen. Da es im heißen Babyuniversum sehr eng zuging, trafen die gegensätzlichen Materiebrüder jedoch aufeinander und zerstrahlten dabei.

Das Echo dieser gewaltigen Explosion hallt in der kosmischen Hintergrundstrahlung bis heute nach. Wäre die Materievernichtung damals perfekt symmetrisch verlaufen, dann hätte sich unser Universum in eine Blase aus reiner Strahlung verwandelt, die sich ohne weitere spannende Ereignisse ausdehnt und abkühlt. Dass es aber Galaxien, Sterne, Planeten und uns selbst gibt, verdanken wir einem kleinen Fehler in der kosmischen Buchhaltung. Eine winzige Abweichung von der perfekten Spiegelsymmetrie zwischen Materie und Antimaterie könnte für das Überleben des kleinen Materieüberschusses gesorgt haben.

Die Frage, was für diesen winzigen Sprung im kosmischen Spiegel gesorgt hat, ist eine der großen bislang ungelösten Fragen der Physik. Seit Jahrzehnten suchen verschiedene physikalische Disziplinen mit unterschiedlichen Strategien nach einer Lösung. Ein vielversprechender Ansatz besteht darin, fundamentale Eigenschaften von Materiebausteinen mit ihren Antimaterie-Spiegelbildern zu vergleichen. Attraktive Kandidaten für so ein Vergleichsprogramm sind das Proton und das Antiproton. Ersteres ist – neben dem Neutron – einer der Bausteine der Atomkerne. Zusammen mit einem Elektron bildet es zudem Wasserstoff, das einfachste und häufigste Element im Universum.

Eine neue Präzisionsmessung 42 Jahre nach der bis dato genauesten Bestimmung

Das Proton ist nicht nur elektrisch geladen, sondern auch magnetisch. Dieser Magnetismus ist ein vielversprechender Punkt auf der wissenschaftlichen Materie-Antimaterie-Checkliste. Einer internationalen Kooperation gelang es nun, das magnetische Moment des Protons, also gewissermaßen die Stärke seines Magnetismus mit bisher unerreichter Präzision zu messen. „Die bis dahin genaueste Messung war 42 Jahre alt und zudem nur indirekt“, sagt Klaus Blaum. „Ihre Interpretation erforderte viele zusätzliche Annahmen, was eine Limitierung darstellt.“

Der Direktor am Max-Planck-Institut für Kernphysik in Heidelberg ist mit einem Team an der Kooperation beteiligt. Er versucht, die gewaltige technische Herausforderung für Laien fassbar zu machen. „Sieht man das Proton als kleinen Stabmagneten an, dann ist sein magnetisches Moment um 24 Größenordnungen, das ist ein Millionstel eines Milliardstels eines Milliardstels, schwächer als eine typische Kompassnadel“, erklärt der Physiker: „Genauso verhält sich das Moment dieser Kompassnadel wiederum zum Magnetfeld der gesamten Erde.“ Schon allein ein einziges Proton einzufangen und zu speichern, erforderte jahrelange Entwicklungsarbeit. Das Experiment, für das ein unter anderem ein fast vollständiges Vakuum brauchen, steht an der Johannes Gutenberg-Universität in Mainz. „Inzwischen können wir so ein Proton ein Jahr lang in unserer Falle speichern“, sagt Blaum, „so gut ist das Vakuum.“

Die Apparatur basiert auf dem Prinzip der sogenannten Penning-Falle. Andreas Mooser, der das Experiment als Diplomand und dann als Doktorand in einer fünfjährigen Arbeit mit aufgebaut hat, erklärt es: „Wir halten das einzelne Proton mit geschickt gewählten elektrischen und magnetischen Feldern im freien Raum fest.“ Doch woran merkt man, ob das winzige Teilchen überhaupt in der Falle gespeichert ist? Ein gespeichertes Proton schwingt fast wie ein Uhrenpendel in der Falle hin und her. Mit seiner Ladung produziert es damit einen extrem schwachen Strom, den die hochsensitive Apparatur als Signal des Protons erfassen kann. „Es geht dabei um winzige Femtoampere-Ströme“, betont Andreas Mooser die Herausforderung. Zum Vergleich: Eine handelsübliche Mignonzelle kann kurzzeitig bis zehn Ampere Strom liefern, ein Femtoampere ist zehnmillionenmilliarden Mal schwächer.

Aus der Schwingung des Protons ergibt sich sein magnetisches Moment

Im Kern geht es bei der im Mainzer Experiment verwendeten Methode darum, die räumliche Ausrichtung des Protons als winzigem Stabmagneten zu bestimmen. Hierzu nutzen die Wissenschaftler die seltsamen Regeln der Quantenwelt aus, nach denen das Proton in einem von außen angelegten Magnetfeld als kleine Kompassnadel nur in zwei entgegengesetzte Richtungen zeigen darf. Je nach Orientierung schwingt das Proton in der Falle schneller oder langsamer. Diese Methode hat der Physik-Nobelpreisträger Hans Georg Dehmelt bereits in den 1980er-Jahren zur Messung des magnetischen Moments des Elektrons verwendet. „Da aber das magnetische Moment des Protons fast 700 Mal kleiner ist, stellt dies eine besondere Herausforderung dar“, sagt Klaus Blaum. So brauchte es weitere dreißig Jahre bis es gelang, diese Methode auf das Proton zu übertragen.

Mit dieser Methode hat das Team das magnetische Moment des Protons bis auf einen winzigen Fehler genau bestimmt. Dieser Fehler liegt in der Größenordnung von einem Milliardstel des Messwerts. Das ist so ungeheuer präzise, dass die Kooperation mit derselben Methode das magnetische Moment des Antiprotons messen will. Dazu baut ein von Stefan Ulmer vom japanischen RIKEN-Institut geleitetes Team ein identisches Experiment an einer Antiprotonenquelle am europäischen Forschungslabor CERN in Genf auf. Sollte das Team gar einen abweichenden Wert für das Antiproton entdecken, wäre das ein wichtiger Schritt zur Lösung des Antimaterie-Rätsels. „Das wäre dann ein Hinweis auf neue Physik außerhalb des Standardmodells der heutigen Teilchenphysik“, sagt Blaum. Entsprechend gespannt sind er und Andreas Mooser, der als Postdoktorand in Genf mit dabei sein wird, auf das Antiprotonen-Experiment.

Ansprechpartner

Prof. Dr. Klaus Blaum

Originalpublikation

 
Andreas Mooser, Stefan Ulmer, Klaus Blaum, Kurt Franke, Holger Kracke, Clemens Leiteritz, Wolfgang Quint, Crícia de Carvalho Rodegheri, Christian Smorra & Jochen Walz
Direct high-precision measurement of the magnetic moment of the proton
Nature 29. Mai 2014; DOI: 10.1038/nature13388

Prof. Dr. Klaus Blaum | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8232171/proton_magnetisches_moment

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultra-sensitiv dank quantenmechanischer Verschränkung
28.06.2017 | Universität Stuttgart

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine