Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Am Kern des Antimaterie-Rätsels

31.05.2014

Eine extrem genaue Messung des magnetischen Moments eines Protons könnte bei der Erklärung des Materieüberschusses im Universum helfen

Sekundenbruchteile nach dem Urknall entstanden Materie und Antimaterie in gleichen Mengen – um sich gegenseitig wieder auszulöschen. Doch ein kleiner Materieüberschuss überlebte und formte das uns heute bekannte Universum. Die Ursache dieses kleinen Überschusses gehört zu den größten Rätseln der Physik. Ein präziser Vergleich der Eigenschaften von Materie und Antimaterie könnte zu seiner Lösung beitragen.


Präzisionsinstrument für diffizile Messungen: Ein einzelnes Proton wird in der vergoldeten Penning-Falle gespeichert. Diese besteht aus ringförmigen Elektroden, die durch isolierende Ringe aus künstlichem Saphir getrennt sind. Aus der Schwingung des Protons in der Falle lässt sich dessen magnetisches Moment bestimmen.

© C. Rodegheri, MPI für Kernphysik

Zu diesen Eigenschaften zählt das magnetische Moment des Protons, das eine wissenschaftliche Kooperation nun so präzise wie nie zuvor bestimmt hat. Beteiligt waren daran Forscher des Max-Planck-Instituts für Kernphysik in Heidelberg. Als nächstes wollen die Wissenschaftler das magnetische Moment des Antiprotons messen. Es ist ein klitzekleiner Sprung im kosmischen Spiegel, dem wir unsere Existenz verdanken. In der heißen Geburtsphase des Universums entstanden Materie und ihr Spiegelbild, die Antimaterie, zu beinahe gleichen Anteilen. Da es im heißen Babyuniversum sehr eng zuging, trafen die gegensätzlichen Materiebrüder jedoch aufeinander und zerstrahlten dabei.

Das Echo dieser gewaltigen Explosion hallt in der kosmischen Hintergrundstrahlung bis heute nach. Wäre die Materievernichtung damals perfekt symmetrisch verlaufen, dann hätte sich unser Universum in eine Blase aus reiner Strahlung verwandelt, die sich ohne weitere spannende Ereignisse ausdehnt und abkühlt. Dass es aber Galaxien, Sterne, Planeten und uns selbst gibt, verdanken wir einem kleinen Fehler in der kosmischen Buchhaltung. Eine winzige Abweichung von der perfekten Spiegelsymmetrie zwischen Materie und Antimaterie könnte für das Überleben des kleinen Materieüberschusses gesorgt haben.

Die Frage, was für diesen winzigen Sprung im kosmischen Spiegel gesorgt hat, ist eine der großen bislang ungelösten Fragen der Physik. Seit Jahrzehnten suchen verschiedene physikalische Disziplinen mit unterschiedlichen Strategien nach einer Lösung. Ein vielversprechender Ansatz besteht darin, fundamentale Eigenschaften von Materiebausteinen mit ihren Antimaterie-Spiegelbildern zu vergleichen. Attraktive Kandidaten für so ein Vergleichsprogramm sind das Proton und das Antiproton. Ersteres ist – neben dem Neutron – einer der Bausteine der Atomkerne. Zusammen mit einem Elektron bildet es zudem Wasserstoff, das einfachste und häufigste Element im Universum.

Eine neue Präzisionsmessung 42 Jahre nach der bis dato genauesten Bestimmung

Das Proton ist nicht nur elektrisch geladen, sondern auch magnetisch. Dieser Magnetismus ist ein vielversprechender Punkt auf der wissenschaftlichen Materie-Antimaterie-Checkliste. Einer internationalen Kooperation gelang es nun, das magnetische Moment des Protons, also gewissermaßen die Stärke seines Magnetismus mit bisher unerreichter Präzision zu messen. „Die bis dahin genaueste Messung war 42 Jahre alt und zudem nur indirekt“, sagt Klaus Blaum. „Ihre Interpretation erforderte viele zusätzliche Annahmen, was eine Limitierung darstellt.“

Der Direktor am Max-Planck-Institut für Kernphysik in Heidelberg ist mit einem Team an der Kooperation beteiligt. Er versucht, die gewaltige technische Herausforderung für Laien fassbar zu machen. „Sieht man das Proton als kleinen Stabmagneten an, dann ist sein magnetisches Moment um 24 Größenordnungen, das ist ein Millionstel eines Milliardstels eines Milliardstels, schwächer als eine typische Kompassnadel“, erklärt der Physiker: „Genauso verhält sich das Moment dieser Kompassnadel wiederum zum Magnetfeld der gesamten Erde.“ Schon allein ein einziges Proton einzufangen und zu speichern, erforderte jahrelange Entwicklungsarbeit. Das Experiment, für das ein unter anderem ein fast vollständiges Vakuum brauchen, steht an der Johannes Gutenberg-Universität in Mainz. „Inzwischen können wir so ein Proton ein Jahr lang in unserer Falle speichern“, sagt Blaum, „so gut ist das Vakuum.“

Die Apparatur basiert auf dem Prinzip der sogenannten Penning-Falle. Andreas Mooser, der das Experiment als Diplomand und dann als Doktorand in einer fünfjährigen Arbeit mit aufgebaut hat, erklärt es: „Wir halten das einzelne Proton mit geschickt gewählten elektrischen und magnetischen Feldern im freien Raum fest.“ Doch woran merkt man, ob das winzige Teilchen überhaupt in der Falle gespeichert ist? Ein gespeichertes Proton schwingt fast wie ein Uhrenpendel in der Falle hin und her. Mit seiner Ladung produziert es damit einen extrem schwachen Strom, den die hochsensitive Apparatur als Signal des Protons erfassen kann. „Es geht dabei um winzige Femtoampere-Ströme“, betont Andreas Mooser die Herausforderung. Zum Vergleich: Eine handelsübliche Mignonzelle kann kurzzeitig bis zehn Ampere Strom liefern, ein Femtoampere ist zehnmillionenmilliarden Mal schwächer.

Aus der Schwingung des Protons ergibt sich sein magnetisches Moment

Im Kern geht es bei der im Mainzer Experiment verwendeten Methode darum, die räumliche Ausrichtung des Protons als winzigem Stabmagneten zu bestimmen. Hierzu nutzen die Wissenschaftler die seltsamen Regeln der Quantenwelt aus, nach denen das Proton in einem von außen angelegten Magnetfeld als kleine Kompassnadel nur in zwei entgegengesetzte Richtungen zeigen darf. Je nach Orientierung schwingt das Proton in der Falle schneller oder langsamer. Diese Methode hat der Physik-Nobelpreisträger Hans Georg Dehmelt bereits in den 1980er-Jahren zur Messung des magnetischen Moments des Elektrons verwendet. „Da aber das magnetische Moment des Protons fast 700 Mal kleiner ist, stellt dies eine besondere Herausforderung dar“, sagt Klaus Blaum. So brauchte es weitere dreißig Jahre bis es gelang, diese Methode auf das Proton zu übertragen.

Mit dieser Methode hat das Team das magnetische Moment des Protons bis auf einen winzigen Fehler genau bestimmt. Dieser Fehler liegt in der Größenordnung von einem Milliardstel des Messwerts. Das ist so ungeheuer präzise, dass die Kooperation mit derselben Methode das magnetische Moment des Antiprotons messen will. Dazu baut ein von Stefan Ulmer vom japanischen RIKEN-Institut geleitetes Team ein identisches Experiment an einer Antiprotonenquelle am europäischen Forschungslabor CERN in Genf auf. Sollte das Team gar einen abweichenden Wert für das Antiproton entdecken, wäre das ein wichtiger Schritt zur Lösung des Antimaterie-Rätsels. „Das wäre dann ein Hinweis auf neue Physik außerhalb des Standardmodells der heutigen Teilchenphysik“, sagt Blaum. Entsprechend gespannt sind er und Andreas Mooser, der als Postdoktorand in Genf mit dabei sein wird, auf das Antiprotonen-Experiment.

Ansprechpartner

Prof. Dr. Klaus Blaum

Originalpublikation

 
Andreas Mooser, Stefan Ulmer, Klaus Blaum, Kurt Franke, Holger Kracke, Clemens Leiteritz, Wolfgang Quint, Crícia de Carvalho Rodegheri, Christian Smorra & Jochen Walz
Direct high-precision measurement of the magnetic moment of the proton
Nature 29. Mai 2014; DOI: 10.1038/nature13388

Prof. Dr. Klaus Blaum | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8232171/proton_magnetisches_moment

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht Einblicke ins Atom
23.01.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie