Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

7 Millionen Euro für Heidelberger Kern- und Elementarteilchenphysiker

01.07.2009
Bundesministerium für Bildung und Forschung fördert Großprojekte zur Erforschung der Struktur der Materie

Im Rahmen der sogenannten Verbundforschung fördert das Bundesministerium für Bildung und Forschung (BMBF) die Beteiligung von Heidelberger Kern- und Elementarteilchenphysikern an Großprojekten zur Erforschung der Struktur der Materie mit insgesamt 7 Millionen Euro.

Damit nehmen die Heidelberger Forscher in der kommenden dreijährigen Förderperiode, die Anfang Juli beginnt, einen Spitzenplatz in der Verbundforschungsförderung in Deutschland ein. Aus Mitteln der Verbundforschung wurden die Heidelberger Physik-Institute bislang bereits unter anderem für ihr Mitwirken an den Experimenten des Large Hadron Collider (LHC) am CERN in Genf mit rund 22.9 Millionen Euro gefördert.

Förderschwerpunkt in den jetzt bewilligten Projekten ist mit 5.3 Millionen Euro weiterhin die Heidelberger Beteiligung an den LHC-Experimenten. Arbeitgruppen aus dem Kirchhoff-Institut für Physik, dem Physikalischen Institut und dem Institut für Technische Informatik sind maßgeblich an drei der vier LHC-Experimente - ALICE, ATLAS und LHCb beteiligt. Eine vergleichbar breite Mitarbeit am LHC-Programm gibt es an keiner anderen Universität weltweit.

Die Fragestellungen, die mit den LHC-Experimenten angegangen werden sollen, stehen in engem Zusammenhang mit der Entstehung und der Entwicklung unseres Universums. Am ALICE-Experiment soll ein neuer Materiezustand, das Quark-Gluon-Plasma, erstmalig eindeutig nachgewiesen und untersucht werden. Aus dieser Quark-Gluon-"Suppe" bestand unser Universum kurze Zeit nach dem Urknall, es soll am LHC in Schwerionenkollisionen erzeugt werden. Das ATLAS-Experiment untersucht den Ursprung der Massen. Es fahndet nach neuen, möglicherweise "supersymmetrischen" Teilchen, die Kandidaten der im Universum beobachteten dunklen Materie sein könnten. Abweichungen von der dreidimensionalen Raumstruktur bei kleinsten Abständen könnten zu spektakulären Ereignissen wie "mini" Schwarzen Löchern führen. Das un­terschiedliche Verhalten von Materie und Antimaterie ist eine Fragestellung, die am LHCb-Experiment untersucht wird. Die Forscher erhoffen sich aus der genauen Vermessung sogenannter B-Mesonen Hinweise auf neue physikalische Phänomene und neue Einsichten im Verständnis der in unserem Universum beobachteten Materieasymmetrie. Sollten also in den nächsten Jahren am LHC neue Phänomene entdeckt werden, so werden Physiker der Universität Heidelberg unmittelbar daran beteiligt sein.

Zweiter Schwerpunkt der BMBF-Förderung ist mit einer Summe von 1.1 Millionen Euro die Vorbereitung und der Aufbau eines neuen Experiments an dem an der GSI in Darmstadt geplanten Beschleunigerkomplex FAIR. Heidelberger Institute werden am CBM-Experiment mitarbeiten, das sich die Untersuchung von Kernmate­rie bei höchsten Dichten, so wie sie beispielsweise in Neutronensternen oder in Kernen von Supernovaexplo­sionen existiert, zur Aufgabe machen wird.

Die hohe BMBF-Förderung der Heidelberger Kern- und Elementarteilchenphysik unterstreicht eindrücklich die Spitzenposition, die dieser Forschungsbereich der Universität Heidelberg in Deutschland einnimmt. Sie erlaubt den Heidelberger Forschergruppen auch in Zukunft, maßgeblich zur Erforschung der Struktur der Materie und zum Verständnis der Entwicklung unseres Universums beitragen zu können.

Kontakt:
ALICE:
Prof. Dr. J. Stachel, Physikalisches Institut, Tel. 06221 549224
stachel@physi.uni-heidelberg.de
ATLAS:
Prof. Dr. K. Meier, Kirchhoff-Institut für Physik, Tel. 06221 549831
meierk@kip.uni-heidelberg.de
LHCb:
Prof. Dr. U. Uwer, Physikalisches Institut Tel.06221 549226
uwer@physi.uni-heidelberg.de
FAIR:
Prof. Dr. N. Herrmann, Physikalisches Institut
Tel. 06221 549464,
herrmann@physi.uni-heidelberg.de
Allgemeine Rückfragen von Journalisten bitte an:
Universität Heidelberg
Kommunikation und Marketing
Dr. Michael Schwarz, Pressesprecher
michael.schwarz@rektorat.uni-heidelberg.de

Dr. Michael Schwarz | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf dem Weg zur optischen Kernuhr
19.04.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Laser erzeugt Magnet – und radiert ihn wieder aus
18.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics