Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

1400 km Glasfasern verbinden optische Uhren in Deutschland und Frankreich

09.08.2016

Weltweit bester Vergleich von optischen Uhren über eine große Distanz hinweg bestätigt die herausragende Qualität der Verbindung

Optische Atomuhren haben in den letzten Jahren spektakuläre Fortschritte gemacht. Sie sind 100-mal genauer als die besten Cäsium-Atomuhren. Leider ist diese Genauigkeit bisher nur lokal nutzbar, denn die herkömmliche Übertragungstechnik per Satellit verursacht eine zu hohe Frequenzunsicherheit.


Die metrologische Glasfaserverbindung zwischen der PTB in Braunschweig und dem LNE-SYRTE in Paris wird in Straßburg zusammengeführt. Insgesamt ist die Strecke 1400 km lang.

(Abb.: PTB)

Ein neuer direkter „Draht“ zwischen Frankreich und Deutschland ändert dies jetzt: Über eine 1400 km lange Glasfaserstrecke zwischen Braunschweig und Paris lassen sich hochgenaue Frequenzen sozusagen auf die Reise schicken. In diesen Städten betreiben die Physikalisch-Technische Bundesanstalt (PTB) und das Institut Systèmes de Référence Temps-Espace (LNE-SYRTE) die genauesten optischen Uhren Europas.

Ebenfalls am Uhrenvergleich beteiligt ist das französische Laboratoire de Physique des Lasers (LPL). Ein erster Vergleich zwischen den optischen Strontiumuhren der Partnerinstitute lieferte den Beweis, dass die Verbindung tatsächlich mit der gewünschten Qualität funktioniert. Gleichzeitig stellt diese Messung den ersten Frequenzvergleich optischer Uhren über Ländergrenzen hinweg mit einer bisher unerreicht kleinen relativen Unsicherheit von 5 • 10e–17 dar.

Damit wird ein europäisches Netzwerk optischer Uhren denkbar. Dieses könnte in Zukunft ultragenaue optische Referenzfrequenzen beispielsweise für die Grundlagenphysik, die Astronomie und die Geowissenschaften zur Verfügung stellen. Über ihre Ergebnisse berichten die Wissenschaftler in der aktuellen Ausgabe von Nature Communications.

Der Vergleich von sehr genauen Uhren ermöglicht äußerst empfindliche Messungen, z. B. für die Suche nach möglichen zeitlichen Änderungen von Naturkonstanten. Der Gang einer Uhr kann aber auch für die Messung des lokalen Gravitationspotenzials genutzt werden: Ein Vergleich zwischen zwei Uhren ergibt – über die gemessene Gravitationsrotverschiebung – die Höhendifferenz zwischen den Uhren, also Stützpunkte für die Referenzfläche der Geodäten, das sogenannte Geoid der Erde. Dieser Forschungsansatz wird u. a. im DFG-Sonderforschungsbereich 1128 („geo-Q“) von Physikern und Geodäten gemeinsam verfolgt.

Die genauesten Atomuhren basieren heutzutage auf optischen Übergängen. Diese optischen Uhren können eine stabile Frequenz mit einer relativen Unsicherheit von wenigen 10e–18 liefern. Somit sind sie etwa 100-mal genauer als die besten Cäsium-Fontänenuhren, die zurzeit die SI-Einheit Sekunde realisieren. Doch Vergleiche, bei denen Frequenzen optischer Uhren per Satellit übertragen werden, stoßen bei einer Frequenzunsicherheit von 10e–16 an ihre Grenzen.

Vor diesem Hintergrund haben schon seit Jahren Wissenschaftler in der PTB und an zwei französischen Instituten in Paris (Systèmes de Référence Temps-Espace, LNE-SYRTE, und Laboratoire de Physique des Lasers, LPL) an einer Glasfaserverbindung zwischen dem deutschen und dem französischen nationalen Metrologieinstitut, also der PTB und dem LNE-SYRTE, gearbeitet. Jetzt ist die 1400 km lange Strecke fertig. Sie beruht auf kommerziellen Glasfasern, bei denen Frequenzverschiebungen um bis zu 6 Größenordnungen aktiv unterdrückt und Leistungsverluste von 200 dB (10e20) mit speziellen Verstärkern ausgeglichen werden. So können optische Signale mit sehr hoher Stabilität hindurchgeleitet werden.

Der deutsche Teil der Strecke nutzt kommerziell angemietete Glasfasern und Einrichtungen des Deutschen Forschungsnetzes (DFN). Der französische Teil nutzt das Netz des Bildungs- und Forschungsministeriums RENATER, das von GIP RENATER betrieben wird. Etwa in der Mitte der Strecke, im IT-Zentrum der Universität Straßburg, treffen sich die Signale aus dem LNE-SYRTE und der PTB, sodass die Uhren der beiden Institute dort miteinander verglichen werden können. Beteiligt sind neben der PTB folgende Partner: Institut für Erdmessung (IfE) der Leibniz Universität Hannover, Laboratoire de Physique des Lasers (Université Paris 13/Sorbonne Paris Cité/CNRS), LNE-SYRTE (Observatoire de Paris/PSL Research University/CNRS/Sorbonne Université/UPMC Univ. Paris 6/Laboratoire National de Métrologie et d'Essais) sowie GIP RENATER (CNRS, CPU, CEA, INRIA, CNES, INRA, INSERM, ONERA, CIRAD, IRSTEA, IRD, BRGM und MESR).

Dass die Strecke tatsächlich die hohen Erwartungen erfüllt, zeigte sich beim ersten Vergleich der beiden optischen Strontium-Gitteruhren von PTB und LNE-SYRTE. Bereits nach einer Mittelungszeit von nur 2000 Sekunden lag die Frequenzschwankung bei weniger als 2 • 10e–17, und diese zeigt die hohe Stabilität der Uhren. Die Strecke selbst erlaubt schnelle Uhrenvergleiche mit einer Unsicherheit von weniger als 10e–18. Da beide Uhren auf demselben atomaren Übergang basieren, sollten sie theoretisch exakt die gleiche Frequenz liefern. Doch ihre Standorte haben eine Höhendifferenz von 25 Metern, die sich durch eine Gravitationsrotverschiebung ausdrückt. Tatsächlich konnte das innerhalb der kombinierten Unsicherheit der Uhren von 5 • 10e-17 bestätigt werden.

Die Partner sehen diese erfolgreiche Zusammenarbeit als einen wichtigen ersten Schritt in Richtung auf ein europäisches Netzwerk von glasfaserverbundenen optischen Uhren, an dem sich sukzessive weitere europäische Metrologieinstitute mit ihren optischen Uhren beteiligen könnten. Das dürfte ihnen eine führende Rolle auf dem Gebiet der Verbreitung von optischen Referenzfrequenzen einbringen. Langfristig könnte ein solches Netzwerk den verschiedensten Nutzern ultrastabile und hochgenaue optische Referenzsignale liefern, wie sie zurzeit nur in Metrologieinstituten verfügbar sind. Davon könnten verschiedene Forschungsgebiete profitieren: unter anderem die Grundlagenphysik für Tests der fundamentalen Gesetze der Physik, die Geowissenschaften und nicht zuletzt auch die Metrologie. Damit ist auch ein weiterer Schritt getan, um auf dem Weg zu einer Neudefinition der Sekunde optische Uhren an der Realisierung der weltweiten Zeitskala zu beteiligen.
(es/ptb)

Ansprechpartner zum Thema Strontiumuhr in der PTB und am LNE-SYRTE, CNRS:
Dr. Christian Lisdat, PTB-Arbeitsgruppe 4.32 Optische Gitteruhren, Telefon: (0531) 592-4320, E-Mail: christian.lisdat@ptb.de
Dr. Jérôme Lodewyck, Telefon: +33 (0) 1 40 51 22 24, E-Mail: jerome.lodewyck@obspm.fr

Ansprechpartner zum Thema Glasfaserverbindung in der PTB und am LNE-SYRTE, CNRS:
Dr. Gesine Grosche, PTB-Arbeitsgruppe 4.34 Frequenzübertragung mit Glasfasern,
Telefon: (0531) 592-4340, E-Mail: gesine.grosche@ptb.de
Dr. Paul-Eric Pottie, Telefon: + 33 (0) 1 40 51 22 22, E-Mail: paul-eric.pottie@obspm.fr

Die wissenschaftliche Veröffentlichung:
C. Lisdat et al.: A clock network for geodesy and fundamental science. Nature Comms. 7:12443 (2016), DOI 10.1038/NCOMMS12443

http://www.ptb.de/

Erika Schow | Physikalisch-Technische Bundesanstalt (PTB)

Weitere Berichte zu: CNRS GIP Laboratoire PTB PTB-Arbeitsgruppe Satellit Unsicherheit

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Erforschung von Elementarteilchen in Materialien

17.01.2017 | Physik Astronomie

Wasser - der heimliche Treiber des Kohlenstoffkreislaufs?

17.01.2017 | Geowissenschaften

Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab

17.01.2017 | Biowissenschaften Chemie