Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

1400 km Glasfasern verbinden optische Uhren in Deutschland und Frankreich

09.08.2016

Weltweit bester Vergleich von optischen Uhren über eine große Distanz hinweg bestätigt die herausragende Qualität der Verbindung

Optische Atomuhren haben in den letzten Jahren spektakuläre Fortschritte gemacht. Sie sind 100-mal genauer als die besten Cäsium-Atomuhren. Leider ist diese Genauigkeit bisher nur lokal nutzbar, denn die herkömmliche Übertragungstechnik per Satellit verursacht eine zu hohe Frequenzunsicherheit.


Die metrologische Glasfaserverbindung zwischen der PTB in Braunschweig und dem LNE-SYRTE in Paris wird in Straßburg zusammengeführt. Insgesamt ist die Strecke 1400 km lang.

(Abb.: PTB)

Ein neuer direkter „Draht“ zwischen Frankreich und Deutschland ändert dies jetzt: Über eine 1400 km lange Glasfaserstrecke zwischen Braunschweig und Paris lassen sich hochgenaue Frequenzen sozusagen auf die Reise schicken. In diesen Städten betreiben die Physikalisch-Technische Bundesanstalt (PTB) und das Institut Systèmes de Référence Temps-Espace (LNE-SYRTE) die genauesten optischen Uhren Europas.

Ebenfalls am Uhrenvergleich beteiligt ist das französische Laboratoire de Physique des Lasers (LPL). Ein erster Vergleich zwischen den optischen Strontiumuhren der Partnerinstitute lieferte den Beweis, dass die Verbindung tatsächlich mit der gewünschten Qualität funktioniert. Gleichzeitig stellt diese Messung den ersten Frequenzvergleich optischer Uhren über Ländergrenzen hinweg mit einer bisher unerreicht kleinen relativen Unsicherheit von 5 • 10e–17 dar.

Damit wird ein europäisches Netzwerk optischer Uhren denkbar. Dieses könnte in Zukunft ultragenaue optische Referenzfrequenzen beispielsweise für die Grundlagenphysik, die Astronomie und die Geowissenschaften zur Verfügung stellen. Über ihre Ergebnisse berichten die Wissenschaftler in der aktuellen Ausgabe von Nature Communications.

Der Vergleich von sehr genauen Uhren ermöglicht äußerst empfindliche Messungen, z. B. für die Suche nach möglichen zeitlichen Änderungen von Naturkonstanten. Der Gang einer Uhr kann aber auch für die Messung des lokalen Gravitationspotenzials genutzt werden: Ein Vergleich zwischen zwei Uhren ergibt – über die gemessene Gravitationsrotverschiebung – die Höhendifferenz zwischen den Uhren, also Stützpunkte für die Referenzfläche der Geodäten, das sogenannte Geoid der Erde. Dieser Forschungsansatz wird u. a. im DFG-Sonderforschungsbereich 1128 („geo-Q“) von Physikern und Geodäten gemeinsam verfolgt.

Die genauesten Atomuhren basieren heutzutage auf optischen Übergängen. Diese optischen Uhren können eine stabile Frequenz mit einer relativen Unsicherheit von wenigen 10e–18 liefern. Somit sind sie etwa 100-mal genauer als die besten Cäsium-Fontänenuhren, die zurzeit die SI-Einheit Sekunde realisieren. Doch Vergleiche, bei denen Frequenzen optischer Uhren per Satellit übertragen werden, stoßen bei einer Frequenzunsicherheit von 10e–16 an ihre Grenzen.

Vor diesem Hintergrund haben schon seit Jahren Wissenschaftler in der PTB und an zwei französischen Instituten in Paris (Systèmes de Référence Temps-Espace, LNE-SYRTE, und Laboratoire de Physique des Lasers, LPL) an einer Glasfaserverbindung zwischen dem deutschen und dem französischen nationalen Metrologieinstitut, also der PTB und dem LNE-SYRTE, gearbeitet. Jetzt ist die 1400 km lange Strecke fertig. Sie beruht auf kommerziellen Glasfasern, bei denen Frequenzverschiebungen um bis zu 6 Größenordnungen aktiv unterdrückt und Leistungsverluste von 200 dB (10e20) mit speziellen Verstärkern ausgeglichen werden. So können optische Signale mit sehr hoher Stabilität hindurchgeleitet werden.

Der deutsche Teil der Strecke nutzt kommerziell angemietete Glasfasern und Einrichtungen des Deutschen Forschungsnetzes (DFN). Der französische Teil nutzt das Netz des Bildungs- und Forschungsministeriums RENATER, das von GIP RENATER betrieben wird. Etwa in der Mitte der Strecke, im IT-Zentrum der Universität Straßburg, treffen sich die Signale aus dem LNE-SYRTE und der PTB, sodass die Uhren der beiden Institute dort miteinander verglichen werden können. Beteiligt sind neben der PTB folgende Partner: Institut für Erdmessung (IfE) der Leibniz Universität Hannover, Laboratoire de Physique des Lasers (Université Paris 13/Sorbonne Paris Cité/CNRS), LNE-SYRTE (Observatoire de Paris/PSL Research University/CNRS/Sorbonne Université/UPMC Univ. Paris 6/Laboratoire National de Métrologie et d'Essais) sowie GIP RENATER (CNRS, CPU, CEA, INRIA, CNES, INRA, INSERM, ONERA, CIRAD, IRSTEA, IRD, BRGM und MESR).

Dass die Strecke tatsächlich die hohen Erwartungen erfüllt, zeigte sich beim ersten Vergleich der beiden optischen Strontium-Gitteruhren von PTB und LNE-SYRTE. Bereits nach einer Mittelungszeit von nur 2000 Sekunden lag die Frequenzschwankung bei weniger als 2 • 10e–17, und diese zeigt die hohe Stabilität der Uhren. Die Strecke selbst erlaubt schnelle Uhrenvergleiche mit einer Unsicherheit von weniger als 10e–18. Da beide Uhren auf demselben atomaren Übergang basieren, sollten sie theoretisch exakt die gleiche Frequenz liefern. Doch ihre Standorte haben eine Höhendifferenz von 25 Metern, die sich durch eine Gravitationsrotverschiebung ausdrückt. Tatsächlich konnte das innerhalb der kombinierten Unsicherheit der Uhren von 5 • 10e-17 bestätigt werden.

Die Partner sehen diese erfolgreiche Zusammenarbeit als einen wichtigen ersten Schritt in Richtung auf ein europäisches Netzwerk von glasfaserverbundenen optischen Uhren, an dem sich sukzessive weitere europäische Metrologieinstitute mit ihren optischen Uhren beteiligen könnten. Das dürfte ihnen eine führende Rolle auf dem Gebiet der Verbreitung von optischen Referenzfrequenzen einbringen. Langfristig könnte ein solches Netzwerk den verschiedensten Nutzern ultrastabile und hochgenaue optische Referenzsignale liefern, wie sie zurzeit nur in Metrologieinstituten verfügbar sind. Davon könnten verschiedene Forschungsgebiete profitieren: unter anderem die Grundlagenphysik für Tests der fundamentalen Gesetze der Physik, die Geowissenschaften und nicht zuletzt auch die Metrologie. Damit ist auch ein weiterer Schritt getan, um auf dem Weg zu einer Neudefinition der Sekunde optische Uhren an der Realisierung der weltweiten Zeitskala zu beteiligen.
(es/ptb)

Ansprechpartner zum Thema Strontiumuhr in der PTB und am LNE-SYRTE, CNRS:
Dr. Christian Lisdat, PTB-Arbeitsgruppe 4.32 Optische Gitteruhren, Telefon: (0531) 592-4320, E-Mail: christian.lisdat@ptb.de
Dr. Jérôme Lodewyck, Telefon: +33 (0) 1 40 51 22 24, E-Mail: jerome.lodewyck@obspm.fr

Ansprechpartner zum Thema Glasfaserverbindung in der PTB und am LNE-SYRTE, CNRS:
Dr. Gesine Grosche, PTB-Arbeitsgruppe 4.34 Frequenzübertragung mit Glasfasern,
Telefon: (0531) 592-4340, E-Mail: gesine.grosche@ptb.de
Dr. Paul-Eric Pottie, Telefon: + 33 (0) 1 40 51 22 22, E-Mail: paul-eric.pottie@obspm.fr

Die wissenschaftliche Veröffentlichung:
C. Lisdat et al.: A clock network for geodesy and fundamental science. Nature Comms. 7:12443 (2016), DOI 10.1038/NCOMMS12443

http://www.ptb.de/

Erika Schow | Physikalisch-Technische Bundesanstalt (PTB)

Weitere Berichte zu: CNRS GIP Laboratoire PTB PTB-Arbeitsgruppe Satellit Unsicherheit

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie