Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

1400 km Glasfasern verbinden optische Uhren in Deutschland und Frankreich

09.08.2016

Weltweit bester Vergleich von optischen Uhren über eine große Distanz hinweg bestätigt die herausragende Qualität der Verbindung

Optische Atomuhren haben in den letzten Jahren spektakuläre Fortschritte gemacht. Sie sind 100-mal genauer als die besten Cäsium-Atomuhren. Leider ist diese Genauigkeit bisher nur lokal nutzbar, denn die herkömmliche Übertragungstechnik per Satellit verursacht eine zu hohe Frequenzunsicherheit.


Die metrologische Glasfaserverbindung zwischen der PTB in Braunschweig und dem LNE-SYRTE in Paris wird in Straßburg zusammengeführt. Insgesamt ist die Strecke 1400 km lang.

(Abb.: PTB)

Ein neuer direkter „Draht“ zwischen Frankreich und Deutschland ändert dies jetzt: Über eine 1400 km lange Glasfaserstrecke zwischen Braunschweig und Paris lassen sich hochgenaue Frequenzen sozusagen auf die Reise schicken. In diesen Städten betreiben die Physikalisch-Technische Bundesanstalt (PTB) und das Institut Systèmes de Référence Temps-Espace (LNE-SYRTE) die genauesten optischen Uhren Europas.

Ebenfalls am Uhrenvergleich beteiligt ist das französische Laboratoire de Physique des Lasers (LPL). Ein erster Vergleich zwischen den optischen Strontiumuhren der Partnerinstitute lieferte den Beweis, dass die Verbindung tatsächlich mit der gewünschten Qualität funktioniert. Gleichzeitig stellt diese Messung den ersten Frequenzvergleich optischer Uhren über Ländergrenzen hinweg mit einer bisher unerreicht kleinen relativen Unsicherheit von 5 • 10e–17 dar.

Damit wird ein europäisches Netzwerk optischer Uhren denkbar. Dieses könnte in Zukunft ultragenaue optische Referenzfrequenzen beispielsweise für die Grundlagenphysik, die Astronomie und die Geowissenschaften zur Verfügung stellen. Über ihre Ergebnisse berichten die Wissenschaftler in der aktuellen Ausgabe von Nature Communications.

Der Vergleich von sehr genauen Uhren ermöglicht äußerst empfindliche Messungen, z. B. für die Suche nach möglichen zeitlichen Änderungen von Naturkonstanten. Der Gang einer Uhr kann aber auch für die Messung des lokalen Gravitationspotenzials genutzt werden: Ein Vergleich zwischen zwei Uhren ergibt – über die gemessene Gravitationsrotverschiebung – die Höhendifferenz zwischen den Uhren, also Stützpunkte für die Referenzfläche der Geodäten, das sogenannte Geoid der Erde. Dieser Forschungsansatz wird u. a. im DFG-Sonderforschungsbereich 1128 („geo-Q“) von Physikern und Geodäten gemeinsam verfolgt.

Die genauesten Atomuhren basieren heutzutage auf optischen Übergängen. Diese optischen Uhren können eine stabile Frequenz mit einer relativen Unsicherheit von wenigen 10e–18 liefern. Somit sind sie etwa 100-mal genauer als die besten Cäsium-Fontänenuhren, die zurzeit die SI-Einheit Sekunde realisieren. Doch Vergleiche, bei denen Frequenzen optischer Uhren per Satellit übertragen werden, stoßen bei einer Frequenzunsicherheit von 10e–16 an ihre Grenzen.

Vor diesem Hintergrund haben schon seit Jahren Wissenschaftler in der PTB und an zwei französischen Instituten in Paris (Systèmes de Référence Temps-Espace, LNE-SYRTE, und Laboratoire de Physique des Lasers, LPL) an einer Glasfaserverbindung zwischen dem deutschen und dem französischen nationalen Metrologieinstitut, also der PTB und dem LNE-SYRTE, gearbeitet. Jetzt ist die 1400 km lange Strecke fertig. Sie beruht auf kommerziellen Glasfasern, bei denen Frequenzverschiebungen um bis zu 6 Größenordnungen aktiv unterdrückt und Leistungsverluste von 200 dB (10e20) mit speziellen Verstärkern ausgeglichen werden. So können optische Signale mit sehr hoher Stabilität hindurchgeleitet werden.

Der deutsche Teil der Strecke nutzt kommerziell angemietete Glasfasern und Einrichtungen des Deutschen Forschungsnetzes (DFN). Der französische Teil nutzt das Netz des Bildungs- und Forschungsministeriums RENATER, das von GIP RENATER betrieben wird. Etwa in der Mitte der Strecke, im IT-Zentrum der Universität Straßburg, treffen sich die Signale aus dem LNE-SYRTE und der PTB, sodass die Uhren der beiden Institute dort miteinander verglichen werden können. Beteiligt sind neben der PTB folgende Partner: Institut für Erdmessung (IfE) der Leibniz Universität Hannover, Laboratoire de Physique des Lasers (Université Paris 13/Sorbonne Paris Cité/CNRS), LNE-SYRTE (Observatoire de Paris/PSL Research University/CNRS/Sorbonne Université/UPMC Univ. Paris 6/Laboratoire National de Métrologie et d'Essais) sowie GIP RENATER (CNRS, CPU, CEA, INRIA, CNES, INRA, INSERM, ONERA, CIRAD, IRSTEA, IRD, BRGM und MESR).

Dass die Strecke tatsächlich die hohen Erwartungen erfüllt, zeigte sich beim ersten Vergleich der beiden optischen Strontium-Gitteruhren von PTB und LNE-SYRTE. Bereits nach einer Mittelungszeit von nur 2000 Sekunden lag die Frequenzschwankung bei weniger als 2 • 10e–17, und diese zeigt die hohe Stabilität der Uhren. Die Strecke selbst erlaubt schnelle Uhrenvergleiche mit einer Unsicherheit von weniger als 10e–18. Da beide Uhren auf demselben atomaren Übergang basieren, sollten sie theoretisch exakt die gleiche Frequenz liefern. Doch ihre Standorte haben eine Höhendifferenz von 25 Metern, die sich durch eine Gravitationsrotverschiebung ausdrückt. Tatsächlich konnte das innerhalb der kombinierten Unsicherheit der Uhren von 5 • 10e-17 bestätigt werden.

Die Partner sehen diese erfolgreiche Zusammenarbeit als einen wichtigen ersten Schritt in Richtung auf ein europäisches Netzwerk von glasfaserverbundenen optischen Uhren, an dem sich sukzessive weitere europäische Metrologieinstitute mit ihren optischen Uhren beteiligen könnten. Das dürfte ihnen eine führende Rolle auf dem Gebiet der Verbreitung von optischen Referenzfrequenzen einbringen. Langfristig könnte ein solches Netzwerk den verschiedensten Nutzern ultrastabile und hochgenaue optische Referenzsignale liefern, wie sie zurzeit nur in Metrologieinstituten verfügbar sind. Davon könnten verschiedene Forschungsgebiete profitieren: unter anderem die Grundlagenphysik für Tests der fundamentalen Gesetze der Physik, die Geowissenschaften und nicht zuletzt auch die Metrologie. Damit ist auch ein weiterer Schritt getan, um auf dem Weg zu einer Neudefinition der Sekunde optische Uhren an der Realisierung der weltweiten Zeitskala zu beteiligen.
(es/ptb)

Ansprechpartner zum Thema Strontiumuhr in der PTB und am LNE-SYRTE, CNRS:
Dr. Christian Lisdat, PTB-Arbeitsgruppe 4.32 Optische Gitteruhren, Telefon: (0531) 592-4320, E-Mail: christian.lisdat@ptb.de
Dr. Jérôme Lodewyck, Telefon: +33 (0) 1 40 51 22 24, E-Mail: jerome.lodewyck@obspm.fr

Ansprechpartner zum Thema Glasfaserverbindung in der PTB und am LNE-SYRTE, CNRS:
Dr. Gesine Grosche, PTB-Arbeitsgruppe 4.34 Frequenzübertragung mit Glasfasern,
Telefon: (0531) 592-4340, E-Mail: gesine.grosche@ptb.de
Dr. Paul-Eric Pottie, Telefon: + 33 (0) 1 40 51 22 22, E-Mail: paul-eric.pottie@obspm.fr

Die wissenschaftliche Veröffentlichung:
C. Lisdat et al.: A clock network for geodesy and fundamental science. Nature Comms. 7:12443 (2016), DOI 10.1038/NCOMMS12443

http://www.ptb.de/

Erika Schow | Physikalisch-Technische Bundesanstalt (PTB)

Weitere Berichte zu: CNRS GIP Laboratoire PTB PTB-Arbeitsgruppe Satellit Unsicherheit

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Topologische Isolatoren: Neuer Phasenübergang entdeckt
17.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen
17.10.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sicheres Bezahlen ohne Datenspur

17.10.2017 | Informationstechnologie

Pflanzen gegen Staunässe schützen

17.10.2017 | Biowissenschaften Chemie

Den Trends der Umweltbranche auf der Spur

17.10.2017 | Ökologie Umwelt- Naturschutz