Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wasserkopf - Sensor überwacht Hirndruck

02.01.2014
Ist der Druck im Gehirn eines Patienten zu hoch, implantieren Ärzte ein System in den Kopf, das den Druck reguliert. Ein Sensor erlaubt es nun, den Hirndruck zu messen und individuell anzupassen. Das Sensorsystem ist als Langzeitimplantat zugelassen.

Harninkontinenz, ein schlurfender Gang und nachlassende Denkfähigkeit sind Anzeichen für eine Parkinson- oder Alzheimererkrankung.


Mithilfe des implantierten Überwachungssensors können Mediziner den Hirndruck messen. Sie müssen lediglich ein Handlesegerät an den Kopf des Patienten halten. © Patrick J. Lynch / Fraunhofer IMS

Ebenfalls möglich ist ein Hydrocephalus, auch als Wasserkopf bekannt. Bei dieser Diagnose produziert das Gehirn entweder zu viel Hirnflüssigkeit oder diese kann nicht ausreichend »ablaufen«. Die Folge: Der Druck im Gehirn steigt zu stark, es nimmt Schaden. Abhilfe schafft ein Shunt-System – eine Art Silikonschlauch –, das Ärzte in das Gehirn des Patienten implantieren.

Dort leitet es überschüssige Flüssigkeit ab, beispielsweise in den Bauchraum. Herzstück dieses Shunt-Systems ist ein Ventil: Steigt der Druck über einen Schwellenwert, öffnet das Ventil, sinkt er wieder darunter, schließt es.

In seltenen Fällen kann es zu einer Überdrainage kommen. Dabei sinkt der Hirndruck zu stark, die Hirnkammern werden quasi ausgepresst. Bislang können Ärzte eine solche Überdrainage nur über aufwändige und teure Computer- oder Magnetresonanztomographien nachweisen.

Hirndruck jederzeit messbar

Anders mit einem neuartigen Sensor: Wird er mit dem Shunt-System ins Gehirn des Patienten implantiert, können die Ärzte den Hirndruck mit einem Handlesegerät auslesen – in wenigen Sekunden, jederzeit und ohne aufwändige Untersuchung. Entwickelt haben den Sensor Forscher des Fraunhofer-Instituts für Mikroelektronische Schaltungen und Systeme IMS in Duisburg gemeinsam mit der Christoph Miethke GmbH und der Aesculap AG.

Klagt der Patient über Beschwerden, braucht der Arzt lediglich das Handlesegerät von außen an den Kopf des Patienten zu halten. Das Gerät sendet magnetische Funkwellen und versorgt den Sensor im Shunt darüber mit Energie – das Implantat wird »aufgeweckt«, misst Temperatur und Druck in der Hirnflüssigkeit und sendet diese Daten zurück zum Handlesegerät. Ist der Druck außerhalb des gewünschten Bereichs, kann der Arzt das Ventil des Shunt-Systems von außen entsprechend einstellen und es individuell an den Patienten anpassen. »Der Sensor ist ein aktives Implantat, das im Gegensatz zu einem Stent oder einem Zahnimplantat auch Messfunktionen übernimmt«, sagt Michael Görtz, Leiter der Drucksensorik am IMS.

Das Implantat muss bioverträglich sein, der Körper darf es nicht abstoßen. Die Forscher mussten sicherstellen, dass auch der Körper das Implantat nicht angreift. »Die Abwehrreaktionen verhalten sich wie ein aggressives Medium, das sogar das Silizium der Elektronik im Laufe der Zeit auflösen würde«, erläutert Görtz. Miethke verkapselt das Implantat daher vollständig in eine dünne Metallhülle. »Wir können es trotzdem von außen durch die Metallverkapselung mit Energie versorgen, den Hirndruck durch das Gehäuse messen und die aufgenommenen Daten durch das Metall zum Lesegerät nach außen funken«, sagt Görtz. Dazu musste das richtige Metall gefunden werden. Die Schicht darf nicht dicker als die Wand einer Getränkedose sein – also weit dünner als ein Millimeter. Auch das Handlesegerät haben die Forscher entwickelt, samt der Elektronik, über die es mit dem Sensor kommunizieren kann.

Dieser ist serienreif und wurde durch Miethke bereits zugelassen. Mit der Markteinführung des Systems hat das Unternehmen bereits begonnen. »Der Sensor legt die Basis für die Weiterentwicklung hin zu Theranostischen Implantaten – eine Wortschöpfung aus Therapie und Diagnostik. In einigen Jahren könnte der Sensor dann nicht nur den Hirndruck erfassen und damit eine Diagnose erstellen, sondern den Druck auch gleich selbstständig richtig einstellen und somit die Therapie übernehmen«, sagt Görtz.

Michael Görtz | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2014/Januar/wasserkopf-sensor.html

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Wirkt die Biomechanische Stimulation?
21.02.2018 | Hochschule Offenburg, Hochschule für Technik, Wirtschaft und Medien

nachricht Gefäßprothesen aus dem Bioreaktor
19.02.2018 | Leibniz Universität Hannover

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics