Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wasserkopf - Sensor überwacht Hirndruck

02.01.2014
Ist der Druck im Gehirn eines Patienten zu hoch, implantieren Ärzte ein System in den Kopf, das den Druck reguliert. Ein Sensor erlaubt es nun, den Hirndruck zu messen und individuell anzupassen. Das Sensorsystem ist als Langzeitimplantat zugelassen.

Harninkontinenz, ein schlurfender Gang und nachlassende Denkfähigkeit sind Anzeichen für eine Parkinson- oder Alzheimererkrankung.


Mithilfe des implantierten Überwachungssensors können Mediziner den Hirndruck messen. Sie müssen lediglich ein Handlesegerät an den Kopf des Patienten halten. © Patrick J. Lynch / Fraunhofer IMS

Ebenfalls möglich ist ein Hydrocephalus, auch als Wasserkopf bekannt. Bei dieser Diagnose produziert das Gehirn entweder zu viel Hirnflüssigkeit oder diese kann nicht ausreichend »ablaufen«. Die Folge: Der Druck im Gehirn steigt zu stark, es nimmt Schaden. Abhilfe schafft ein Shunt-System – eine Art Silikonschlauch –, das Ärzte in das Gehirn des Patienten implantieren.

Dort leitet es überschüssige Flüssigkeit ab, beispielsweise in den Bauchraum. Herzstück dieses Shunt-Systems ist ein Ventil: Steigt der Druck über einen Schwellenwert, öffnet das Ventil, sinkt er wieder darunter, schließt es.

In seltenen Fällen kann es zu einer Überdrainage kommen. Dabei sinkt der Hirndruck zu stark, die Hirnkammern werden quasi ausgepresst. Bislang können Ärzte eine solche Überdrainage nur über aufwändige und teure Computer- oder Magnetresonanztomographien nachweisen.

Hirndruck jederzeit messbar

Anders mit einem neuartigen Sensor: Wird er mit dem Shunt-System ins Gehirn des Patienten implantiert, können die Ärzte den Hirndruck mit einem Handlesegerät auslesen – in wenigen Sekunden, jederzeit und ohne aufwändige Untersuchung. Entwickelt haben den Sensor Forscher des Fraunhofer-Instituts für Mikroelektronische Schaltungen und Systeme IMS in Duisburg gemeinsam mit der Christoph Miethke GmbH und der Aesculap AG.

Klagt der Patient über Beschwerden, braucht der Arzt lediglich das Handlesegerät von außen an den Kopf des Patienten zu halten. Das Gerät sendet magnetische Funkwellen und versorgt den Sensor im Shunt darüber mit Energie – das Implantat wird »aufgeweckt«, misst Temperatur und Druck in der Hirnflüssigkeit und sendet diese Daten zurück zum Handlesegerät. Ist der Druck außerhalb des gewünschten Bereichs, kann der Arzt das Ventil des Shunt-Systems von außen entsprechend einstellen und es individuell an den Patienten anpassen. »Der Sensor ist ein aktives Implantat, das im Gegensatz zu einem Stent oder einem Zahnimplantat auch Messfunktionen übernimmt«, sagt Michael Görtz, Leiter der Drucksensorik am IMS.

Das Implantat muss bioverträglich sein, der Körper darf es nicht abstoßen. Die Forscher mussten sicherstellen, dass auch der Körper das Implantat nicht angreift. »Die Abwehrreaktionen verhalten sich wie ein aggressives Medium, das sogar das Silizium der Elektronik im Laufe der Zeit auflösen würde«, erläutert Görtz. Miethke verkapselt das Implantat daher vollständig in eine dünne Metallhülle. »Wir können es trotzdem von außen durch die Metallverkapselung mit Energie versorgen, den Hirndruck durch das Gehäuse messen und die aufgenommenen Daten durch das Metall zum Lesegerät nach außen funken«, sagt Görtz. Dazu musste das richtige Metall gefunden werden. Die Schicht darf nicht dicker als die Wand einer Getränkedose sein – also weit dünner als ein Millimeter. Auch das Handlesegerät haben die Forscher entwickelt, samt der Elektronik, über die es mit dem Sensor kommunizieren kann.

Dieser ist serienreif und wurde durch Miethke bereits zugelassen. Mit der Markteinführung des Systems hat das Unternehmen bereits begonnen. »Der Sensor legt die Basis für die Weiterentwicklung hin zu Theranostischen Implantaten – eine Wortschöpfung aus Therapie und Diagnostik. In einigen Jahren könnte der Sensor dann nicht nur den Hirndruck erfassen und damit eine Diagnose erstellen, sondern den Druck auch gleich selbstständig richtig einstellen und somit die Therapie übernehmen«, sagt Görtz.

Michael Görtz | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2014/Januar/wasserkopf-sensor.html

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Einfacher Schieltest mit neu entwickelter Strabismus-Video-Brille
19.07.2017 | UniversitätsSpital Zürich

nachricht Kunstherz auf dem Prüfstand
13.07.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie