Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Siemens präsentiert das erste kabellose Ultraschallgerät der Welt

26.11.2012
Siemens Healthcare hat das neue Ultraschallsystem Acuson Freestyle vorgestellt, das ganz ohne störende Schallkopfverkabelung arbeitet.

Möglich wird diese neuartige Technologie durch zahlreiche Innovationen in den Bereichen Akustik, Systemarchitektur, Funktechnologie, Miniaturisierung und Bildverarbeitung. Kabellose Schallköpfe werden den Einsatz von Ultraschall vor allem in der chirurgischen und interventionellen Medizin erweitern, wo die Technologie zahlreiche Vorteile für Arbeitsablauf und Bildqualität bietet.



Bisher waren bei der Ultraschallbildgebung die Kabel, die die Schallköpfe zur Datenübertragung mit dem System verbinden, eine lästige Notwendigkeit. Sie schränken nicht nur Beweglichkeit und Geschwindigkeit während der Untersuchung ein, sondern stellen im interventionellen Bereich auch ein Infektionsrisiko dar – selbst wenn sie von einer sterilen Schutzhülle umgeben sind.

Siemens Healthcare stellt mit dem Acuson Freestyle erstmals ein Ultraschallsystem vor, das es Ärzten ermöglicht, mit kabellosen Schallköpfen zu arbeiten. Das System vereinfacht die Anwendung hochmoderner Ultraschalltechnik in Einsatzfeldern, die eine sterile Umgebung erfordern, etwa in der Interventionellen Radiologie, der Anästhesiologie, der Intensivpflege, im Katheterlabor oder in der Notfallversorgung. Mit kabellosen Schallköpfen kann Ultraschall auch bei ganz neuen Verfahren eingesetzt werden, zum Beispiel zur Durchführung von Nervenblockaden, beim Zugang zu Gefässen oder zur Zielortung bei therapeutischen Interventionen und Biopsien.

Für die Bildaufnahme und -verarbeitung verwendet das Acuson Freestyle Synthetic Aperture, eine Technologie, die aus Hardware und Software besteht, und speziell für die kabellose Signalübertragung von hochauflösenden digitalen Bilddaten bei hohen Datenübertragungsraten entwickelt wurde. Diese Methode fokussiert auf jeden Pixel im Bild und erzeugt eine hohe Bildqualität über das ganze Sichtfeld hinweg. So wird auch der Energiebedarf des Schallkopfes reduziert und die Batterien halten länger. Für die kabellose Echtzeit-Übermittlung von Ultraschalldaten nutzt das Acuson Freestyle eine neuartige Ultrabreitband-Funktechnologie, die mit einer sehr hohen Frequenz von 7,8 Gigahertz arbeitet, um die Funktion anderer elektronischer Geräte in der Umgebung nicht einzuschränken.

Für das Acuson Freestyle sind drei kabellose Schallköpfe verfügbar, die zahlreiche Anwendungen in der allgemeinen oder vaskulären Bildgebung und im Hochfrequenz-Bereich unterstützen, wie zum Beispiel für die Darstellung des Bewegungsapparates und der Nerven. Die Schallköpfe können mit bis zu drei Metern Abstand vom Gerät betrieben werden. Ergonomisch angebrachte Tasten gestatten es sogar, Systemeinstellungen aus dem sterilen Bereich heraus fernzusteuern. Zusätzlich verfügt das System über ein 38 Zentimeter grosses, hochauflösendes LED-Display. Die Systemkonsole kann auf ein leichtes Fahrgestell montiert werden und kann auch per Batterie betrieben werden.

Leseranfragen sind zu richten an:
Siemens Schweiz AG
Healthcare Sector
Freilagerstrasse 40
8047 Zürich
Tel. +41 585 581 599
healthcare.ch@siemens.com

| Siemens Healthcare
Weitere Informationen:
http://www.siemens.ch/healthcare

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Wirkt die Biomechanische Stimulation?
21.02.2018 | Hochschule Offenburg, Hochschule für Technik, Wirtschaft und Medien

nachricht Gefäßprothesen aus dem Bioreaktor
19.02.2018 | Leibniz Universität Hannover

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics