Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikroskop – handlich, schnell und flach

02.05.2011
Verdacht auf ein Melanom: Ärzte könnten künftig ein neuartiges Mikroskop zücken, um verdächtige Hautveränderungen zu entlarven. Es untersucht beliebig große Flächen mit hoher Auflösung – und das so schnell, dass man es in der Hand halten kann, ohne die Aufnahme zu verwackeln.

Sind die dunklen Hautverfärbungen des Patienten bösartig? In Zukunft können Ärzte verdächtige Hautstellen mit einem neuen Mikroskop genauer anschauen – und das innerhalb von Sekundenbruchteilen. Es unterstützt eine Auflösung von fünf Mikrometern, ist flach, leicht und macht die Aufnahmen so schnell, dass die Bilder auch dann nicht verwackeln, wenn der Arzt das Gerät in der Hand hält.


Das ultra-dünne Mikroskop (rechts) bildet in einem Durchgang Objekte in der Größe einer Streichholzschachtel ab. Links im Bild: ein Standard-Mikroskopobjektiv. (© Fraunhofer IOF)

Herkömmliche Mikroskope können bei vergleichbarer Auflösung entweder nur ein kleines Feld untersuchen, oder sie scannen die Oberfläche: Punkt für Punkt arbeiten sie sich vorwärts, machen unzählige Aufnahmen und setzen diese zum vollständigen Bild zusammen. Der Nachteil: Es dauert seine Zeit, bis die Aufnahme fertig ist.

Das neuartige Mikroskop, das Forscher vom Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena entwickelt haben, vereint die Vorteile dieser zwei Mikroskoptypen: Es verzichtet auf das Rastern – muss also nur eine einzelne Messung vornehmen und ist daher sehr schnell. Dennoch nimmt es große Bildbereiche auf. »Wir können quasi ein beliebig großes Feld untersuchen«, sagt Dr. Frank Wippermann, Gruppenleiter am IOF. »Die Auflösung ist mit fünf Mikrometern ähnlich wie bei einem Scanner.« Ein weiterer Vorteil: Das Mikroskop ist mit einer optischen Baulänge von 5,3 Millimetern extrem flach.

Doch wie erreichen die Forscher dies? »Unser ultradünnes Mikroskop besteht nicht nur aus einem, sondern aus einer Vielzahl kleiner Abbildungskanäle, also vielen kleinen Linsen nebeneinander. Jeder Kanal bildet einen kleinen Teilausschnitt des Objekts in gleicher Größe ab, was einer 1:1-Abbildung entspricht«, erklärt Wippermann. Die einzelnen Teilausschnitte sind etwa 300 x 300 µm² groß und schließen lückenlos aneinander an – eine Software setzt sie zum Gesamtbild zusammen. Der Unterschied zum Scannermikroskop: Alle Teilausschnitte werden gleichzeitig aufgenommen.

Das Abbildungssystem besteht aus drei Glasplatten, auf denen die kleinen Linsen aufgebracht sind, sowohl auf der Ober- als auch auf der Unterseite. Diese drei Glasplatten werden übereinander gelegt. Zusätzlich befinden sich noch je zwei Achromate ­in jedem Kanal, so dass das Licht insgesamt durch acht Linsen gehen muss. Um die Linsen auf die Glassubstrate zu bringen, sind mehrere Schritte erforderlich: Zunächst bedecken die Wissenschaftler eine Glasplatte mit Photolack und belichten diesen durch eine Maske mit UV-Licht. Die belichteten Stellen härten aus. Legt man die Platte in eine spezielle Lösung, bleiben lediglich viele kleine Zylinder aus Photolack stehen, während sich der Rest der Schicht ablöst. Nun heizen die Forscher die Glasplatte auf: Die Zylinder schmelzen und zerlaufen zu sphärischen Linsen. Von diesem Master-Werkzeug generieren die Forscher ein inverses Werkzeug, das sie als Stempel nutzen. Mit einem solchen Stempel kann die Massenproduktion der Linsen beginnen: Man nimmt ein Glassubstrat, trägt flüssiges Polymer auf, druckt den Stempel darauf und belichtet die Polymerschicht mit UV-Licht. Ähnlich wie der Zahnarzt die Füllungen mit UV-Licht aushärtet, härtet auch hier das Polymer in der Form aus, die der Stempel ihm gibt. Zurück bleiben winzige Linsen auf dem Glassubstrat. »Da wir die Linsen in Massenproduktion herstellen können, sind sie recht kostengünstig«, sagt Wippermann.

Einen ersten Prototypen haben die Forscher bereits realisiert, sie zeigen ihn auf der Messe LASER World of PHOTONICS in München vom 23. bis 26. Mai. Seine Abbildungsgröße beträgt 36 x 24 mm² – das Mikroskop kann also in einem Rutsch Objekte darstellen, die etwa die Größe einer Streichholzschachtel haben. Bis das Gerät serienmäßig gefertigt werden kann, dauert es nach Aussagen des Forschers jedoch noch mindestens ein bis zwei Jahre. Das Anwendungsspektrum ist breit gefächert: So lassen sich etwa auch Dokumente damit untersuchen und auf ihre Echtheit überprüfen.

Dr. Frank Wippermann | Fraunhofer Mediendienst
Weitere Informationen:
http://www.fraunhofer.de/presse/presseinformationen/2010-2011/17/flachmikroskop.jsp

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht UKR setzt auf roboterassistierte Wirbelsäulenchirurgie
02.12.2016 | Universitätsklinikum Regensburg (UKR)

nachricht Neu entwickeltes Plasmaskalpell ermöglicht schonende Operationen
22.11.2016 | FH Aachen

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie