Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Messbar besser: Kalte Flammen helfen der Haut

15.07.2009
Positive medizinische Wirkung der Mikrowellen-Plasmaquelle aus dem FBH an Hautzellen nachgewiesen. Industriepartner sehen großes Marktpotenzial

Hauterkrankungen wie Schuppenflechte oder Akne könnten schon bald mit kalten Flammen behandelt werden. Wie erste biochemische Analysen an menschlichen Hautzellen der Heinrich-Heine-Universität in Düsseldorf gezeigt haben, konnte die positive medizinische Wirkung bei der Behandlung von Hautzellen mit Stickstoffmonoxid (NO) mit einer Mikrowellen-Plasmaquelle aus dem Ferdinand-Braun-Institut für Höchstfrequenz­technik (FBH) nachgewiesen werden.

„Die Ergebnisse zeigen, dass diese Plasmaquelle ein ideales Werkzeug ist, genau definierte Mengen NO in einem eng umgrenzten Gebiet zu applizieren, um gezielt Krankheitsgeschehen zu behandeln“, fasste Dr. Jörg Liebmann von der Immunbiologie der Uni Düsseldorf anlässlich eines BioLiP-Projekttreffens zusammen. In BioLiP werden die biologischen und gesundheitsfördernden Wirkungen von Licht- und Plasmaquellen erforscht; das Projekt wird vom BMBF gefördert und vereint Forschungseinrichtungen, Universitäten und Unternehmen, um den raschen Transfer von Forschungsergebnissen zu sichern.

Anwendungen bei der Behandlung von Hauterkrankungen, Wundheilungsstörungen oder aber auch bei der Entkeimung von Wunden seien laut Einschätzung von Liebmann denkbar. Insbesondere konnte gezeigt werden, dass NO bis in die Zellen vordringt und dort mit Proteinen interagiert, was entscheidend für die physiologische Wirkung von NO ist. Anhand von Kulturen menschlicher Hautzellen wurde die Mikrowellen-Plasmaquelle von der Uni Düsseldorf in medizinischer Hinsicht charakterisiert, um wichtige Parameter für die spätere Behandlung von Patienten festzulegen. Neuere medizinische Erkenntnisse haben nämlich ergeben, dass der Heilungsprozess durch Stickstoffmonoxid (NO) beeinflusst werden kann. NO zerfällt jedoch an der Luft. Mit der Atmosphären-Plasmaquelle aus dem Ferdinand-Braun-Institut ist es dagegen möglich, NO aus den Basisgasen Stickstoff und Sauerstoff direkt in einer kleinen Plasmaflamme herzustellen – es wirkt also, bevor es zerfallen kann. Auch die Haut verbrennt nicht, da die Flamme des Mikrowellen-Plasmas kalt ist.

Kompakte Plasmaquelle mit kalter Flamme und hohem Marktpotenzial

Die innovative Mikrowellen-Plasmaquelle funktioniert anders als herkömmliche Plasmaquellen bei Atmophärendruck, also an der normalen Umgebungsluft. Gase können damit bei normalem Luftdruck angeregt werden, eine kalte Flamme entsteht. Entscheidend für die unkomplizierte Nutzbarkeit ist, dass weder eine Unterdruckkammer noch Hochspannungsversorgung benötigt werden – das FBH-Gerät wird mit 24 Volt Niederspannung betrieben. Dies ermöglicht nicht nur völlig neue Anwendungen im medizinischen Bereich, sondern eröffnet vielfältige industrielle Einsatzmöglichkeiten, beispielsweise bei der Oberflächenbehandlung und -veredelung wie Kleben, Lackieren oder Bedrucken. Die Projektpartner aus der Industrie stehen jedenfalls bereit. „Gemeinsam mit dem FBH möchten wir die neuartigen voll integrierten Atmosphären-Plasmaquellen weiter entwickeln, da wir für diese Produkte ein großes Marktpotenzial in verschiedenen Anwendungsgebieten sehen“, zeigt sich Joachim Scherer, Geschäftsführer der Aurion Anlagentechnik und einer der industriellen Projektpartner, überzeugt. Das Ferdinand-Braun-Institut arbeitet bereits an der Weiterentwicklung des Prototyps, mit dem künftig die Behandlung größerer Hautflächen möglich sein soll.

Eine wichtige Voraussetzung für die spätere Nutzung in medizinischen Geräten ist die Bestimmung verschiedener Parameter, mit denen die Gase optimal dosiert werden können. Dazu wurde von der Ruhr-Universität Bochum die Strahlung der FBH-Quelle aus verschiedenen Plasmazonen gemessen, spektroskopisch zerlegt und mit plasma­physikalischen Modellen verglichen. Ergebnis der aufwändigen Prozedur ist die quantitative Bestimmung der Konzentration und Flussdichten der Teilchensorten, die im Plasma generiert werden und die auf dem zu behandelnden Substrat auftreten. Auf diese Weise kann die Quelle hinsichtlich verschiedener Teilchenflüsse etwa für die Stickstoff- oder Ozon-Therapie optimiert werden, um Behandlungen möglichst ideal zu gestalten. Bestimmte unerwünschte Eigenschaften können damit zugleich minimiert oder abgeschaltet werden, wie etwa die UV-C-Strahlung, die in geringen Dosen bereits toxisch wirkt.

Petra Immerz | FBH Berlin
Weitere Informationen:
http://www.fbh-berlin.de

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Einfacher Schieltest mit neu entwickelter Strabismus-Video-Brille
19.07.2017 | UniversitätsSpital Zürich

nachricht Kunstherz auf dem Prüfstand
13.07.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die turbulente Atmosphäre der Venus

25.07.2017 | Physik Astronomie

SEEDs – Intelligente Batterien mit zellinterner Sensorik

25.07.2017 | Energie und Elektrotechnik

Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

25.07.2017 | Physik Astronomie