Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Messbar besser: Kalte Flammen helfen der Haut

15.07.2009
Positive medizinische Wirkung der Mikrowellen-Plasmaquelle aus dem FBH an Hautzellen nachgewiesen. Industriepartner sehen großes Marktpotenzial

Hauterkrankungen wie Schuppenflechte oder Akne könnten schon bald mit kalten Flammen behandelt werden. Wie erste biochemische Analysen an menschlichen Hautzellen der Heinrich-Heine-Universität in Düsseldorf gezeigt haben, konnte die positive medizinische Wirkung bei der Behandlung von Hautzellen mit Stickstoffmonoxid (NO) mit einer Mikrowellen-Plasmaquelle aus dem Ferdinand-Braun-Institut für Höchstfrequenz­technik (FBH) nachgewiesen werden.

„Die Ergebnisse zeigen, dass diese Plasmaquelle ein ideales Werkzeug ist, genau definierte Mengen NO in einem eng umgrenzten Gebiet zu applizieren, um gezielt Krankheitsgeschehen zu behandeln“, fasste Dr. Jörg Liebmann von der Immunbiologie der Uni Düsseldorf anlässlich eines BioLiP-Projekttreffens zusammen. In BioLiP werden die biologischen und gesundheitsfördernden Wirkungen von Licht- und Plasmaquellen erforscht; das Projekt wird vom BMBF gefördert und vereint Forschungseinrichtungen, Universitäten und Unternehmen, um den raschen Transfer von Forschungsergebnissen zu sichern.

Anwendungen bei der Behandlung von Hauterkrankungen, Wundheilungsstörungen oder aber auch bei der Entkeimung von Wunden seien laut Einschätzung von Liebmann denkbar. Insbesondere konnte gezeigt werden, dass NO bis in die Zellen vordringt und dort mit Proteinen interagiert, was entscheidend für die physiologische Wirkung von NO ist. Anhand von Kulturen menschlicher Hautzellen wurde die Mikrowellen-Plasmaquelle von der Uni Düsseldorf in medizinischer Hinsicht charakterisiert, um wichtige Parameter für die spätere Behandlung von Patienten festzulegen. Neuere medizinische Erkenntnisse haben nämlich ergeben, dass der Heilungsprozess durch Stickstoffmonoxid (NO) beeinflusst werden kann. NO zerfällt jedoch an der Luft. Mit der Atmosphären-Plasmaquelle aus dem Ferdinand-Braun-Institut ist es dagegen möglich, NO aus den Basisgasen Stickstoff und Sauerstoff direkt in einer kleinen Plasmaflamme herzustellen – es wirkt also, bevor es zerfallen kann. Auch die Haut verbrennt nicht, da die Flamme des Mikrowellen-Plasmas kalt ist.

Kompakte Plasmaquelle mit kalter Flamme und hohem Marktpotenzial

Die innovative Mikrowellen-Plasmaquelle funktioniert anders als herkömmliche Plasmaquellen bei Atmophärendruck, also an der normalen Umgebungsluft. Gase können damit bei normalem Luftdruck angeregt werden, eine kalte Flamme entsteht. Entscheidend für die unkomplizierte Nutzbarkeit ist, dass weder eine Unterdruckkammer noch Hochspannungsversorgung benötigt werden – das FBH-Gerät wird mit 24 Volt Niederspannung betrieben. Dies ermöglicht nicht nur völlig neue Anwendungen im medizinischen Bereich, sondern eröffnet vielfältige industrielle Einsatzmöglichkeiten, beispielsweise bei der Oberflächenbehandlung und -veredelung wie Kleben, Lackieren oder Bedrucken. Die Projektpartner aus der Industrie stehen jedenfalls bereit. „Gemeinsam mit dem FBH möchten wir die neuartigen voll integrierten Atmosphären-Plasmaquellen weiter entwickeln, da wir für diese Produkte ein großes Marktpotenzial in verschiedenen Anwendungsgebieten sehen“, zeigt sich Joachim Scherer, Geschäftsführer der Aurion Anlagentechnik und einer der industriellen Projektpartner, überzeugt. Das Ferdinand-Braun-Institut arbeitet bereits an der Weiterentwicklung des Prototyps, mit dem künftig die Behandlung größerer Hautflächen möglich sein soll.

Eine wichtige Voraussetzung für die spätere Nutzung in medizinischen Geräten ist die Bestimmung verschiedener Parameter, mit denen die Gase optimal dosiert werden können. Dazu wurde von der Ruhr-Universität Bochum die Strahlung der FBH-Quelle aus verschiedenen Plasmazonen gemessen, spektroskopisch zerlegt und mit plasma­physikalischen Modellen verglichen. Ergebnis der aufwändigen Prozedur ist die quantitative Bestimmung der Konzentration und Flussdichten der Teilchensorten, die im Plasma generiert werden und die auf dem zu behandelnden Substrat auftreten. Auf diese Weise kann die Quelle hinsichtlich verschiedener Teilchenflüsse etwa für die Stickstoff- oder Ozon-Therapie optimiert werden, um Behandlungen möglichst ideal zu gestalten. Bestimmte unerwünschte Eigenschaften können damit zugleich minimiert oder abgeschaltet werden, wie etwa die UV-C-Strahlung, die in geringen Dosen bereits toxisch wirkt.

Petra Immerz | FBH Berlin
Weitere Informationen:
http://www.fbh-berlin.de

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Wirkt die Biomechanische Stimulation?
21.02.2018 | Hochschule Offenburg, Hochschule für Technik, Wirtschaft und Medien

nachricht Gefäßprothesen aus dem Bioreaktor
19.02.2018 | Leibniz Universität Hannover

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics