Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie ein lädiertes Gelenk besser heilt

03.03.2011
Ist das Knie kaputt, braucht der Patient Geduld – die Regeneration dauert Wochen. Forscher haben jetzt ein System entwickelt, das den Heilungsprozess genau dokumentiert. Das motiviert den Patienten und ermöglicht dem Arzt, den Therapieverlauf besser zu steuern.

Sonne, Schnee, vollkommenes Pistenglück. Doch ein Moment der Unachtsamkeit kann böse Folgen haben: Stürze ziehen oft Verletzungen nach sich – am häufigsten sind die Knie betroffen. Bis diese wieder voll funktionstüchtig sind, vergehen Wochen, und der Patient muss das Laufen wieder erlernen. Wie schnell das lädierte Kniegelenk heilt, hängt maßgeblich davon ab, wie gut die gewählte Therapie anschlägt. Doch wie kann ein Orthopäde den Heilungsverlauf sicher beurteilen? Und wie weiß der Patient, welche Fortschritte er macht?

Bisher können Ärzte nur eingeschränkte Funktionstests durchführen, während der Betroffene sich auf seine subjektiven Empfindungen verlassen muss. Jetzt haben Forscher vom Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA in Stuttgart ein System entwickelt, das das Bewegungsverhalten des Knies erfasst. Es zeigt sowohl Patienten als auch Therapeuten an, wie es um das Gelenk bestellt ist. »Nicht nur der Verletzte sieht, welche Fortschritte seine Genesung macht, auch der Arzt erkennt sofort, ob er die Therapie ändern muss«, sagt Dipl.-Ing. Bernhard Kleiner vom IPA. »Für den Betroffenen kann das positive psychische Effekte haben.« Selbst wenn der Patient glaubt, seine Heilung komme nicht voran – das System zeigt jede noch so kleine Verbesserung der Kniebeweglichkeit. »Das motiviert«, sagt Kleiner.

Die moderne Therapiekontrolle funktioniert so: In einer Art Winkel, der in die Bandage integriert ist, befinden sich spezielle Sensoren. Sie registrieren den Bewegungswinkel des Knies und erfassen über einen Zeitraum, wie der Patient das Knie bewegt. Eine neue Software wertet die Daten aus und stellt sie für den Betroffenen leicht verständlich dar. Was simpel klingt, war für die Ingenieure eine besondere Herausforderung: Winkelmesssysteme wurden bisher nur in der Industrie verwendet. Die Frage war: Wie kann man die Sensoren am menschlichen Körper anbringen, ohne dass sie den Betroffenen stören? Dazu mussten die Forscher die Sensorsysteme miniaturisieren und Leichtbaumaterialien verbauen. Bei den Sensoren handelt es sich entweder um Winkelmessysteme, die auf einem magnetischen Prinzip beruhen, oder auf Beschleunigungs- und Drehratensensoren basieren.

Je nach Verletzung und Therapie registriert das System nicht nur den Beugungswinkel. Es kann auch messen, wie stark das Gelenk rotiert oder welche Belastung darauf wirkt. Kontinuierlich überwacht der Sensor die Bewegungen, die Daten werden gespeichert. Daher kann der Therapeut anschließend den Verlauf des Kniewinkels über die Zeit prüfen, Tendenzen feststellen und gegebenenfalls die Behandlung anpassen. Zudem haben die Forscher unterschiedliche Halterungen für die Sensorsysteme entwickelt, so dass der Patient die mobile Gelenküberwachung nicht bemerkt und seine Bewegungsfreiheit nicht eingeschränkt wird.

»Die Messung der menschlichen Kinematik wollen wir künftig auch in anderen Körperregionen einsetzen«, sagt Kleiner. Schulter und Hüfte haben die Fraunhofer-Forscher bereits im Blick. Allerdings sind dort die Anforderungen noch komplexer, denn das System muss die Bewegungen des Gelenks in allen drei Achsen fehlerfrei messen. Dafür verwenden die Ingenieure 3-D-Sensorsysteme und eine entsprechende Software. Auf der Messe MEDTEC Europe in Stuttgart (22. bis 24. März 2011, Halle 6, Stand 6211) zeigen die Experten, wie die mobile Gelenküberwachung funktioniert.

Bernhard Kleiner | Fraunhofer Mediendienst
Weitere Informationen:
http://www.fraunhofer.de/presse/presseinformationen/2010-2011/15/wie-ein-laediertes-gelenk-besser-heilt.jsp

Weitere Berichte zu: Gelenk Gelenküberwachung IPA Knie Sensor Sensorsystem

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Wirkt die Biomechanische Stimulation?
21.02.2018 | Hochschule Offenburg, Hochschule für Technik, Wirtschaft und Medien

nachricht Gefäßprothesen aus dem Bioreaktor
19.02.2018 | Leibniz Universität Hannover

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics