Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entscheidender Schritt für medizinische Diagnostik

06.03.2015

Diamant-Sensor macht einzelne Proteine in natürlicher Umgebung sichtbar

Proteine sind die zentralen Bausteine des Lebens. Zellen beispielsweise sind aus einer Vielzahl verschiedener Proteinen zusammengesetzt. Ihr Zusammenspiel bestimmt praktisch alle wichtigen biologischen Funktionen und entscheidet über Gesundheit beziehungsweise Krankheit von Organismen.


Dank des neuen Verfahrens zur Sichtbarmachung von Proteinen wird es möglich, die Spinresonanz-tomographie auf einzelne Zellen und deren Bestandteile zu übertragen.

Universität Stuttgart

Proteine selbst bestehen aus vielen Tausend Atomen, deren genaue Anordnung die Funktionsweise des Proteins bestimmt. Entsprechend begehrt sind Verfahren, die es erlauben, die genaue Form und Dynamik von Proteinen in ihrer natürlichen Umgebung zu untersuchen.

Ein internationales Forscherteam der Universität Stuttgart und der Chinesischen Akademie der Wissenschaften ist dabei nun einen entscheidenden Schritt vorangekommen. Darüber berichtet die Zeitschrift Science in Ihrer Ausgabe vom 6. März 2015.

Der Gruppe um Prof. Jörg Wrachtrup vom 3. Physikalischen Institut der Universität Stuttgart und Prof. Jiangfeng Du ist es gelungen, mit einem neuen Verfahren einzelne Proteine in natürlicher Umgebung sichtbar zu machen. Dazu haben sie einen neuen Sensor benutzt, der auf einzelnen Defekten in Diamant beruht.

Die Defekte können Magnetfelder in ihrer Umgebung nachweisen und sind zum Beispiel empfindlich genug, um das Feld einzelner Elektronen detektieren zu können. Dies haben die Forscher ausgenutzt, um die Proteine sichtbar zu machen. Von Natur aus sind nur wenige Proteine magnetisch, das heißt, weisen einzelne Elektronenspins auf.

Die Forscher haben daher die Zielproteine mit einem Molekül markiert, das ein magnetisches Moment aufweist und dann in die Nähe des Sensors gebracht. Auf diese Weise konnten sie nicht nur das Protein nachweisen, sondern auch Informationen über die Konformation des Proteins sowie dessen Dynamik gewinnen.

Beide Informationen sind entscheidend, um das Zusammenspiel von Proteinen zu untersuchen, und lassen sich mit dem Verfahren erstmals mit der von den Forschern gezeigten Empfindlichkeit und räumlichen Auflösung nachweisen.

Die Methode der Forscher lässt sich mit den bekannten Verfahren der optischen Mikroskopie verbinden und auf nicht markierte Proteine übertragen. Mit den jüngst erreichten Fortschritten in der räumlichen Auflösungen der optischen Mikroskopie lassen sich Proteine in ihrer natürlichen Umgebung detailliert untersuchen. Damit wird eines der bekanntesten Verfahren der klinischen Diagnostik, nämlich die Spinresonanztomographie, auf einzelne Zellen und deren Bestandteile die Proteine übertragen.

Originalpublikation:
Fazhan Shi,Qi Zhang, Pengfei Wang, Hongbin Sun, Jiarong Wang, Xing Rong, Ming Chen, Chenyong Ju, Friedemann Reinhard, Hongwei Chen, Jörg Wrachtrup, Junfeng Wang, Jiangfeng Du,:
Single-protein Spin Resonance Spectroscopy under Ambient Conditions
http://www.sciencemag.org/content/347/6226/1135

Weitere Informationen:
Prof. Jörg Wrachtrup, Universität Stuttgart, 3. Physikalisches Institut, Tel. ++49.(0)711/685-65278,
E-Mail: j.wrachtrup (at) physik.uni-stuttgart.de
Andrea Mayer-Grenu, Universität Stuttgart, Abt. Hochschulkommunikation, Tel. 0711/685-82176,
E-Mail: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Wirkt die Biomechanische Stimulation?
21.02.2018 | Hochschule Offenburg, Hochschule für Technik, Wirtschaft und Medien

nachricht Gefäßprothesen aus dem Bioreaktor
19.02.2018 | Leibniz Universität Hannover

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kameratechnologie in Fahrzeugen: Bilddaten latenzarm komprimiert

21.02.2018 | Messenachrichten

Mit grüner Chemie gegen Malaria

21.02.2018 | Biowissenschaften Chemie

Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro

21.02.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics