Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

DZHK-Studien: Strahlenfreie und nicht-invasive Diagnose der diastolischen Herzschwäche

10.10.2017

Im Deutschen Zentrum für Herz-Kreislauf-Forschung (DZHK) starten zwei neue Studien zur diastolischen Herzschwäche. Sie untersuchen, ob man diese Form der Herzschwäche mithilfe der Magnetresonanztomographie (MRT) besser diagnostizieren und ihre Ursachen abklären kann.

Die diastolische Herzschwäche, die auch Heart failure with preserved ejecton fraction (HFpEF) genannt wird, ist ein Krankheitsbild, das auf den ersten Blick widersprüchlich wirkt. Die Patienten haben die Symptome einer systolischen Herzschwäche, leiden zum Beispiel unter Atemnot und Wasseransammlungen. Aber anders als bei der systolischen Herzschwäche ist die Pumpkraft ihres Herzens nicht beeinträchtigt.


Studienleiter Professor Dr. Eike Nagel

Quelle: DZHK


Studienleiter Privatdozent Dr. Dr. Andreas Schuster

Quelle: Universitätsmedizin Göttingen

Problematisch bei HFpEF ist vielmehr, dass die linke Herzkammer steif ist und nicht adäquat mit Blut gefüllt wird. Daher leiten sich auch die Bezeichnungen diastolische und systolische Herzschwäche ab: Diastole bezeichnet die Phase, wenn das Herz sich ausdehnt und mit Blut füllt, Systole die Phase, wenn das Herz sich zusammenzieht und Blut auswirft.

Die unzureichende Füllung des Herzens ist mit den derzeit eingesetzten nicht-invasiven Methoden, wie einer Ultraschalluntersuchung, schwierig zu messen und wird oft erst spät erkannt. Invasive Methoden sind zwar exakter, aber teuer, belastend und sie lassen keine Rückschlüsse auf die Erkrankungsursachen zu.

Neuer Standard für die Diagnostik der HFpEF

Die multizentrische Studie DECIPHER HFpEF-DZHK12 unter Leitung von Professor Eike Nagel vom Universitätsklinikum Frankfurt hat das Ziel, die Magnetresonanztomographie (MRT) des Herzens als Standardmethode für die Diagnostik der HFpEF zu etablieren.

Hierfür vergleicht die Studie die Daten der Herz-MRT mit den Ergebnissen des bisherigen Goldstandards in der Diagnostik der HFpEF, der invasiven Hämodynamik, bei der die Patienten mit einem Herzkatheter untersucht werden. Um ein umfassendes Bild über die Aussagekraft der Herz-MRT zu erlangen, vergleichen Nagel und seine Kollegen die MRT-Messungen auch mit den Ergebnissen aus Ultraschalluntersuchungen und Analysen von Gewebeproben des Herzmuskels.

Ein Krankheitsbild mit vielen Ursachen

Damit wollen die Wissenschaftler untersuchen, ob mithilfe der Herz-MRT abgeklärt werden kann, warum die Erkrankung entsteht. Denn das Problem, das einer diastolischen Herzschwäche zugrunde liegt, kann sehr unterschiedlich sein. So kommt dafür zum Beispiel eine Herzmuskelentzündung ebenso in Frage wie eine Verdickung des Herzmuskels oder eine verminderte Durchblutung durch Veränderungen kleinster Blutgefäße.

In den letzten Jahren entwickelte MRT-Verfahren ermöglichen es, diese Parameter zu beurteilen und werden in der Studie erstmals in einer kombinierten Untersuchung zusammengeführt. Denn anders als bei einer Ultraschalluntersuchung kann man mit diesen neuen Verfahren im MRT nicht nur die Füllung der Herzkammer und den Durchfluss messen, sondern zum Beispiel auch sehen, ob der Herzmuskel entzündet ist, eine krankhafte Vermehrung des Bindegewebes vorliegt oder die kleinen Gefäße verändert sind.

„Erst wenn die Ursachen klar sind, kann man die Patienten auch gezielt medikamentös behandeln. Denn eine Entzündung des Herzmuskels wird ganz anders therapiert als eine Durchblutungsstörung“, erläutert Nagel. „Auch aussagekräftige therapeutische Studien sind erst möglich, wenn wir die verschiedenen Patienten-Untergruppen auseinanderhalten können.“

DECIPHER HFpEF-DZHK12 will hierfür die Basis legen. Sie ist die weltweit erste multizentrische Studie zur Diagnostik der HFpEF; an ihr beteiligen sich neben Frankfurt am Main auch die DZHK-Standorte Berlin, Heidelberg und Göttingen. Sollten die Ergebnisse positiv sein, würde die Studie zu einer Veränderung der Leitlinien für die Diagnostik der HFpEF führen.

Innovatives MRT-Verfahren im Test

Am DZHK-Standort Göttingen startet darüber hinaus eine Pilotstudie zu einer neuartigen Diagnostik der HFpEF, die noch einen Schritt weiter geht. Unter der Leitung von Privatdozent Dr. Dr. Andreas Schuster testen die Wissenschaftler, ob die neu entwickelte Echtzeit-MRT-Technologie geeignet ist, die HFpEF frühzeitig und sicher zu diagnostizieren. Diese wegweisende Technologie wurde von Professor Dr. Jens Frahm vom Max-Planck-Institut für biophysikalische Chemie in Göttingen entwickelt und steht zurzeit nur wenigen Zentren weltweit zur Verfügung.

Sie ermöglicht es erstmals, MRT-Messungen am Herzen unter Belastung durchzuführen, da die Patienten bei der MRT-Untersuchung weiteratmen können und nicht, wie bisher, während der Messungen den Atem anhalten müssen. Möglich wird das durch eine bisher unerreichte Beschleunigung, bei der ganze Filme der Herzbewegung in ein bis zwei Herzschlägen aufgenommen werden. Mithilfe der Technologie wollen die Göttinger Wissenschaftler in ihrer Studie nun MRT-Parameter definieren, die eine hämodynamische rechtsventrikuläre Belastungsuntersuchung ersetzen können. Diese Belastungsuntersuchung wird mithilfe eines Herzkatheters durchgeführt und gehört zu den sensitivsten und spezifischsten diagnostischen Möglichkeiten bei HFpEF.

Herz-Stress gibt Aufschluss

„Wenn man körperlich arbeitet oder Sport treibt, schlägt das Herz schneller. Dadurch reduziert sich die Zeit für die Füllung des Herzens mit sauerstoffreichem Blut und eine eventuell bestehende Füllungsproblematik wird noch deutlicher“, erläutert Dr. Sören Backhaus vom Herzzentrum Göttingen das Konzept der Untersuchungen unter Stress. In der Studie müssen die Patienten für die Belastungsmessungen im MRT Fahrrad fahren. Dafür wird auf der Untersuchungsliege eine Art Hometrainer installiert, so dass die Patienten während der MRT im Liegen radeln können.

Die Forscher messen dabei die Herzfrequenz, die 100 bis 110 Schläge pro Minute erreichen soll, um die Füllungsproblematik zu verdeutlichen. Die MRT-Untersuchung wird auch in Ruhe durchgeführt und mit den Ergebnissen aus der invasiven Hämodynamik, ebenfalls in Ruhe und unter Belastung, verglichen. Für die Patienten hätte die Belastungsuntersuchung im MRT den Vorteil, dass sie nicht invasiv ist, keine Strahlenbelastung verursacht und trotzdem hoch aufgelöste, detaillierte Bilder für eine präzise Diagnostik liefert.

„Wenn wir mit diesem Ansatz im MRT Parameter finden, mit denen wir eine HFpEF sicher und frühzeitig feststellen können, werden größere multizentrische Studien folgen, um unsere Ergebnisse zu validieren und das neue MRT-Verfahren in der Diagnostik der HFpEF zu etablieren“, blickt Schuster voraus.

Studientitel:
Validation of Cardiovascular Magnetic Resonance against Invasive haemodynamics in patients with Heart Failure with Preserved Ejection Fraction (Decipher HFpEF-DZHK12)
http://www.cardiac-imaging.org/decipher--hfpef.html
https://clinicaltrials.gov/ct2/show/NCT03251183

Studienleiter:
Prof. Dr. Eike Nagel, Institut für Experimentelle und Translationale Kardiovaskuläre Bildgebung, Universitätsklinikum Frankfurt

Studientitel:
Cardiovascular magnetic resonance real time exercise stress testing in heart failure with preserved ejection fraction (HFpEF-stress-DZHK17)

Studienleiter:
PD Dr. Dr. Andreas Schuster, Universitätsmedizin Göttingen, Herzzentrum Göttingen

Kontakt:
Christine Vollgraf, Presse- und Öffentlichkeitsarbeit, Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Tel.: 030 3465 529 02, presse@dzhk.de

Weitere Informationen:

https://dzhk.de/aktuelles/news/artikel/dzhk-studien-strahlenfreie-und-nicht-inva...

Christine Vollgraf | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Extrem schnelle Erfassung und Visualisierung von Tumorgrenzen während der Operation
15.01.2018 | Universität zu Lübeck

nachricht Wie Metallstrukturen effektiv helfen, Knochen zu heilen
12.01.2018 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie