Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekül-Sonde für eine präzise Krebsdiagnostik

12.12.2007
Beim empfindlichsten bildgebenden Verfahren für die Krebsdiagnostik werden radioaktiv markierte Moleküle eingesetzt, die im Körper des Patienten zum Tumor oder zu den Metastasen wandern. Die Strahlung kann von außen gemessen werden und liefert dreidimensionale Bilder vom Stoffwechsel der Krebszellen.

Im Forschungszentrum Dresden-Rossendorf (FZD) wurde eine solche Molekül-Sonde auf der Basis einer Aminosäure entwickelt. Jüngste Ergebnisse, die in der Fachzeitschrift "The Journal of Nuclear Medicine" veröffentlicht wurden, zeigen, dass diese Sonde für die Erkennung einiger Tumore besser geeignet ist als die üblicherweise verwendeten Zuckermoleküle.

Moderne Tumorforschung will die Ursachen und Zusammenhänge von Krebserkrankungen auf der Ebene von Molekülen und Zellen verstehen, um neue und bessere Ansatzpunkte für die Therapie der Volkskrankheit Krebs zu finden. Im Forschungszentrum Dresden-Rossendorf wird hierfür die Methode der Positronen-Emissions-Tomographie (PET) eingesetzt, da diese exzellent dafür geeignet ist, biochemische Prozesse in krankem Gewebe im lebenden Körper sichtbar zu machen.

Heute wird bei den meisten PET-Untersuchungen ein radioaktiv markierter Zucker verabreicht. Der Einsatz dieses Zuckers findet bei den Tumoren seine Grenzen, die wenig oder keinen Zucker verbrauchen. Zudem spielt Zucker auch bei entzündlichen Prozessen eine Rolle, sodass sich der Arzt für die genaue Diagnose - Entzündung oder Tumor? - oft nicht allein auf den PET-Zucker verlassen kann.

Tumorzellen benötigen zum Wachsen viele essentielle Aminosäuren. Hierauf baut das Institut für Radiopharmazie im FZD bei der Entwicklung neuer Molekül-Sonden. Solch ein im Institut erforschtes und mittlerweile erhältliches radioaktives Arzneimittel befindet sich für Hirntumore schon heute im Einsatz. Es handelt sich um eine mit radioaktivem Fluor markierte Aminosäure (18F-OMFD), die sehr spezifisch an die Oberfläche von Zellen bestimmter Hirntumore andockt und sie mit Hilfe der PET-Methode sichtbar macht. Neue Untersuchungen an Tumorzellkulturen (in vitro) und erste Versuche am Tumormausmodel (in vivo) zeigten, dass die radioaktive Sonde des FZD auch für die Bildgebung eines weiteren Tumortyps geeignet ist. Es handelt sich hierbei um ein Plattenepithelkarzinom aus der Kopf-Hals-Region. Diese Tumorzellen nehmen im Experiment viel mehr von der Molekül-Sonde auf als andere Zellen, weshalb sie als mögliche neue Diagnosesubstanz für diesen Tumortyp geeignet scheint.

Die Biologin Dr. Cathleen Haase setzte die Substanz zudem für eine tumorbiologische Fragestellung ein. Sie interessierte sich dafür, wie genau Aminosäuren zu Krebszellen transportiert werden. Dafür untersuchte sie ein bestimmtes System, das so genannte L-Aminosäure-Transportsystem (LAT). Im Ergebnis ihrer molekularbiologischen Untersuchungen konnte sie zeigen, dass L-Aminosäure-Transporter an der Oberfläche von Krebszellen häufiger verankert sind als andere Aminosäure-Transporter. Ihre Experimente belegen ganz konkret, dass die Aminosäure-Transporter LAT-1 und LAT-4 für das Wachstum verschiedenster Tumore von besonderer Wichtigkeit sind und, darüber hinaus, dass die Rossendorfer Molekülsonde in den Tumorzellen über genau diese Transporter aufgenommen wird. Da man die Sonde anschließend von außen mit Hilfe der PET-Methode sichtbar machen kann, ist sie sehr gut dafür geeignet, die Rolle von Aminosäuren und ihren Transportsystemen für das Wachstum von Tumoren im lebenden Körper zu erforschen.

Dr. Cathleen Haase kommentiert: "Die Zellen des humanen Plattenepithelkarzinoms aus dem Kopf-Hals-Bereich sind schwach differenziert - im Gegensatz zu einem zweiten Tumortyp, den wir untersucht haben. Dieser Tumortyp, ein Adenokarzinom, wächst immer aus Drüsengewebe und ist deshalb stark differenziert. Allerdings haben wir hier noch Forschungsarbeit zu leisten. Da der Tumor der Kopf-Hals-Region sehr aggressiv ist, hoffen wir, dass wir mit unserer Sonde zur sicheren und frühzeitigen Diagnose beitragen können. Die Substanz hilft uns zugleich dabei, den Grundmechanismus von Krebszellen auf molekularer Ebene noch besser zu verstehen. Letztendlich ist es unser Ziel, für jeden Tumortyp eine spezifische Molekülsonde zu entwickeln".

Kurz-Information zu Aminosäuren:
Aminosäuren sind für eine Vielzahl von Stoffwechselprozessen im menschlichen Körper unverzichtbar. Es handelt sich um eine Gruppe kleiner organischer Verbindungen mit mindestens einer Carboxylgruppe (-COOH) und mindestens einer Aminogruppe (-NH2). Eine Untergruppe, die proteinogenen Aminosäuren, bilden die Bausteine für Eiweißstoffe von Lebewesen. Von diesen biologisch wichtigen Aminosäuren sind 21 bekannt. Ein Teil der Aminosäuren muss vom Menschen mit der Nahrung aufgenommen werden - diese werden essentielle Aminosäuren genannt.

Hinter der Kurzbezeichnung 18F-OMFD verbirgt sich ein mit radioaktivem Fluor markiertes Phenylalanin-Aminosäure-Derivat.

Veröffentlichung:
Haase, C., Bergmann, R., Fuechtner, F., Hoepping, A.*, Pietzsch, J.:"L-Type Amino Acid Transporters LAT1 and LAT4 in Cancer: Uptake of 3-O-Methyl-6-18F-Fluoro-L-Dopa in Human Adenocarcinoma and Squamous Cell Carcinoma In Vitro and In Vivo", in: The Journal of Nuclear Medicine, Vol. 48 (12), 2063-71 (2007).

* ABX Advanced Biochemical Compounds GmbH, Radeberg.

Weitere Informationen:
PD Dr. Jens Pietzsch / Dr. Cathleen Haase
Forschungszentrum Dresden-Rossendorf (FZD)
Institut für Radiopharmazie
Tel.: 0351 260 - 2622 / 2859
Email: j.pietzsch@fzd.de / c.haase@fzd.de
Pressekontakt:
Dr. Christine Bohnet
Forschungszentrum Dresden-Rossendorf (FZD)
Presse- und Öffentlichkeitsarbeit
Bautzner Landstr. 128, 01328 Dresden
Tel.: 0351 260 - 2450 oder 0160 969 288 56
Email : c.bohnet@fzd.de
Information:
Das FZD leistet wesentliche Beiträge in der Grundlagen- und anwendungsorientierten Forschung auf folgenden Gebieten:
o Wie verhält sich Materie unter dem Einfluss hoher Felder und in winzigen Dimensionen?
o Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
o Wie schützt man Mensch und Umwelt vor technischen Risiken?
Das FZD engagiert sich für die Umsetzung der wissenschaftlichen Erkenntnisse im Hinblick auf die zukünftige Gestaltung von Wirtschaft und Gesellschaft. Es betreibt zu diesem Zweck 6 größere Forschungsanlagen, die auch externen Nutzern zur Verfügung stehen.

Das FZD ist mit ca. 700 Mitarbeitern das größte Institut der Leibniz-Gemeinschaft http://www.wgl.de und verfügt über ein jährliches Budget von rund 57 Mill. Euro (Stand: 12/2006). Hinzu kommen etwa 10 Mill. Euro aus nationalen und europäischen Förderprojekten sowie aus Verträgen mit der Industrie. Zur Leibniz-Gemeinschaft gehören 83 außeruniversitäre Forschungsinstitute und Serviceeinrichtungen für die Forschung. Leibniz-Institute arbeiten interdisziplinär und verbinden Grundlagenforschung mit Anwendungsnähe. Jedes Leibniz-Institut hat eine Aufgabe von gesamtstaatlicher Bedeutung, weshalb sie von Bund und Ländern gemeinsam gefördert werden. Die Leibniz-Institute verfügen über ein Gesamtbudget von gut 1 Milliarde Euro und beschäftigen mehr als 13.000 Mitarbeiter.

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fzd.de
http://www.wgl.de

Weitere Berichte zu: Aminosäure FZD Krebszelle Molekül-Sonde Sonde Tumortyp

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken
28.03.2017 | Technische Universität Braunschweig

nachricht Neue Hoffnung für Leberkrebspatienten
24.03.2017 | Universitätsklinikum Regensburg (UKR)

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE