Wie gefährliche Darmbakterien heil durch den sauren Magen kommen

In Entwicklungsländern erkranken zahlreiche Kleinkinder an schwerem Durchfall, viele sterben daran. Dahinter stecken häufig krankheitserregende Stämme des Darmbakteriums Escherichia coli (enteropathogene Escherichia coli – EPEC) und Bakterien der Gattung Yersinia.

Diese Bakterien entfalten ihre Wirkung, indem sie sich an Zellen des Dünndarms anheften und über eine Art Nadelapparat Gifte in den Darm injizieren. Menschen nehmen die Bakterien häufig über den Mund auf, sodass eigentlich der Magen mit seiner zerstörerischen Säure eine Barriere gegen die Infektion bieten sollte.

Mitglieder des Sonderforschungsbereichs 766 „Die bakterielle Zellhülle“ an der Universität Tübingen, zu dem auch Wissenschaftler des Universitätsklinikums sowie Jack C. Leo und Professor Dirk Linke vom Tübinger Max-Planck-Institut für Entwicklungsbiologie gehörten, hat die Vorgänge näher untersucht. Sie haben entdeckt, wie sich die Bakterien bei der Passage durch den Magen vor Säurestress und mechanischen Belastungen schützen können. Ihre Forschungsergebnisse veröffentlichen sie nun in der Fachzeitschrift Molecular Microbiology.

EPEC- und Yersinia-Bakterien befallen die Zellen des Dünndarms, die die Nahrung aufnehmen. Dabei nutzen die Bakterien sogenannte Adhäsine, Anheftungsstoffe, wie zum Beispiel das Intimin (ein Protein; von „intimate adherence“), um sich an die Darmepithelzellen anzuheften und eine Transportverbindung zwischen den Bakterien und der Darmzelle herzustellen.

Durch diesen Kanal gelangen durchfallerregende Gifte in den menschlichen Darm. Vor der eigentlichen Infektion im Darm befindet sich das Intimin zunächst in der äußeren Hülle der Bakterien, die aus mehreren Schichten besteht: der inneren und der äußeren Membran, und dazwischen ist die festere Zellwand. Ihr Gerüst besteht aus Peptidoglykan, einem netzartigen Riesenmolekül, das aus Zucker- und Aminosäurebausteinen besteht.

Die Forscher haben herausgefunden, dass das Intimin eine Proteindomäne (LysM) besitzt, die das Intimin an das Peptidoglykan bindet. „Allerdings funktioniert das nur unter sauren Bedingungen“, erklärt Dirk Linke. Diese Bindung wirkt stabilisierend auf die Zellhülle des Bakteriums. „Wir gehen davon aus, dass die EPEC-Bakterien durch diesen Mechanismus vor aggressiver Säure und mechanischen Belastungen geschützt sind und daher unbeschadet den Magen passieren können.“ Das Intimin unterstützt somit den Infektionsprozess der Bakterien, die möglicherweise sonst kaum in den Dünndarm gelangen könnten. Die Wissenschaftler vermuten, dass das Intimin die Virulenz (Gefährlichkeit) dieser Bakterien deutlich erhöht.

Geldgeber des SFB 766 „Die bakterielle Zellhülle: Struktur, Funktion und Schnittstelle bei der Infektion“ (The Bacterial Cell Envelope: Structure, Function and Infection Interface) ist die Deutsche Forschungsgemeinschaft (DFG).

Originalpublikation:
Jack C. Leo, Philipp Oberhettinger, Manish Chaubey, Monika Schütz, Daniel Kühner, Ute Bertsche, Heinz Schwarz, Friedrich Götz, Ingo B. Autenrieth, Murray Coles, Dirk Linke: The Intimin periplasmic domain mediates dimerisation and binding to peptidoglycan. Molecular Microbiology, DOI 10.1111/mmi.12840

Kontakt:
Prof. Dr. Dirk Linke
Vormals SFB 766 an der Universität Tübingen und Max-Planck-Institut für Entwicklungsbiologie
Universität Oslo
dirk.linke[at]ibv.uio.no

Prof. Dr. Friedrich Götz
Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
SFB 766 und Mikrobielle Genetik
Telefon +49 70 71 29-74635
friedrich.goetz[at]uni-tuebingen.de

Media Contact

Dr. Karl Guido Rijkhoek idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-tuebingen.de/

Alle Nachrichten aus der Kategorie: Medizin Gesundheit

Dieser Fachbereich fasst die Vielzahl der medizinischen Fachrichtungen aus dem Bereich der Humanmedizin zusammen.

Unter anderem finden Sie hier Berichte aus den Teilbereichen: Anästhesiologie, Anatomie, Chirurgie, Humangenetik, Hygiene und Umweltmedizin, Innere Medizin, Neurologie, Pharmakologie, Physiologie, Urologie oder Zahnmedizin.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer