Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Wege der Seuchen

26.10.2012
Ein neues Computer-Modell schätzt schnell und genau ab, wer eine Infektion besonders weit verbreitet, und erleichtert so Gegenmaßnahmen. Epidemien könnten sich künftig wirkungsvoller eindämmen lassen.

Eine neue computergestützte Methode, die Forscher des Leipziger Max-Planck-Institutes für Mathematik in den Naturwissenschaften entwickelt haben, identifiziert jene Personen in der Bevölkerung, die eine Infektion am stärksten verbreiten.


Ein Geflecht potenzieller Ansteckungswege: Wie viele Pfade mit einer vorgegebenen Zahl indirekter Kontakte in einem sozialen Netzwerk von einer Person zu allen anderen Personen führen, gibt Ausschluss, wer eine Infektion besonders effektiv verbreitet. Die Wege zu zählen ermöglicht es, schneller und genauer als bisher zu ermitteln, welche Personen bevorzugt geimpft werden müssen, um eine Epidemie zu vermeiden.
iStock

Gegenüber anderen Methoden zeichnet sich das Verfahren dadurch aus, dass es mit wesentlich weniger Rechenaufwand als vergleichbare Präzisionsverfahren die tatsächliche Anzahl von Menschen abschätzt, die eine bestimmte Person direkt oder indirekt angesteckt. Andere Schnellverfahren liefern lediglich ein qualitatives Ranking der Überträger, ermöglichen aber keine Aussagen, wie viel mehr Menschen ein Infizierter im Vergleich zu einem weniger virulenten Überträger ansteckt. Diese Information ist vor allem dann wichtig, wenn Impfstoff knapp ist. Ärzte müssen dann wissen, welche Personen sie bevorzugt impfen sollen, um eine Epidemie möglichst effektiv zu verhindern.

Wer eine Infektion am aktivsten überträgt, ist schwierig vorherzusagen. So stecken Infizierte mit vielen Kontakten nicht immer die meisten Mitmenschen an. Dass die Effizienz, mit der ein Mensch Krankheitskeime verbreitet, vom Grad seiner Vernetzung abhängt, liegt zwar nahe, trifft aber nur bedingt zu. „Es gibt auch Personen, die weniger gut vernetzt sind und eine Infektion dennoch sehr weit verbreiten“, sagt Joseph Lizier, der am Max-Planck-Institut für Mathematik in den Naturwissenschaften die Ausbreitung von Epidemien untersuchte und inzwischen an der Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Sydney forscht. Da nicht leicht zu erkennen ist, welche Eigenschaften von sozialen Netzwerken für die Verbreitung einer Infektion ausschlaggebend sind, haben der Informatiker Lizier und der Mathematiker Frank Bauer diese Charakteristika genauer untersucht. Als soziales Netzwerk lässt sich dabei etwa die Bevölkerung einer Region, eines Landes oder gar der Welt betrachten.

Zwar gab es schon vor der Arbeit der beiden Forscher am Max-Planck-Institut für Mathematik in den Naturwissenschaften Computer-Programme, die eine Ausbreitung von Seuchen simulieren. „Doch diese sind entweder ungenau oder sie liefern präzise Ergebnisse, erzeugen aber einen enormen Rechenaufwand“, sagt Joseph Lizier. Zudem wollten die Forscher die tatsächliche Anzahl der Infizierten abschätzen können und nicht nur eine Rangfolge der aktivsten Überträger aufstellen. „Mit den absoluten Zahlen der infizierten Personen lässt sich unterscheiden, ob die Infektion insgesamt eher harmlos verläuft, oder ob sie grassiert und weite Teile der Bevölkerung erfasst", sagt Bauer, der inzwischen an der Mathematischen Fakultät der Harvard University im US-amerikanischen Cambridge arbeitet.

Das Programm testet, wie effektiv jede Person eine Infektion verbreitet

Das Computer-Verfahren der Forscher berechnet, wie viele Personen sich von einer zufällig herausgegriffenen erstinfizierten Person (Patient Null) nach einer gewissen Zeitspanne direkt oder indirekt angesteckt haben. Da diese Rechnung für alle Personen in einem sozialen Netzwerk ausgeführt wird, lassen sich die effektivsten Verbreiter der Krankheit identifizieren. Das Programm testet also alle Personen auf ihre Eignung als Überträger der Infektion.

Das klingt aufwendig. Doch die Methode von Bauer und Lizier arbeitet sehr effizient, wie Tests mit Daten eines sozialen Netzwerkes demonstrierten. Für ihre Modellstudie wählten die Forscher ein virtuelles Netzwerk, und zwar das Beziehungsgeflecht einer Forschergemeinschaft, das andere Wissenschaftler schon zuvor aus Daten eines Internet-Archivs für wissenschaftliche Publikationen erzeugt hatte. Das Netzwerk umfasst mehr als 27000 Personen und mehr als 100000 Verbindungen zwischen ihnen. Nun simulierten Joseph Lizier und Frank Bauer, wie sich eine Infektion in dem Kontaktgeflecht ausbreiten würde – angenommen, die beteiligten Menschen publizieren nicht nur gemeinsam, sondern begegnen sich auch persönlich. „In etwa einer Stunde hatten wir das Ergebnis", berichtet Lizier. Um ähnlich präzise Aussagen zu erhalten, benötigt eine herkömmliche Methode etwa 2000 Mal so lang, also fast drei Monate.

Die Ansteckungsgefahr steigt mit der Zahl der möglicher Infektionswege

Das Verfahren von Bauer und Lizier zählt alle möglichen Wege, die eine Infektion innerhalb einer vorgegebenen Zeit vom Patient Null zu einer anderen Person (Patient X) nehmen kann. Die dafür nötige Zeit ergibt sich aus der Anzahl der Personen, die im Netzwerk zwischen dem Patienten Null und dem Patienten X liegen. Dabei berücksichtigt die Methode nur Wege bis zu einer vorgegebenen Maximalzahl von indirekt Angesteckten und lässt zudem Wege außen vor, die über eine bereits infizierte Person verlaufen, da diese nach einer Infektion immun sind. Je größer die Anzahl der möglichen Wege, desto größer ist die Wahrscheinlichkeit, dass Patient X infiziert wird. Da die möglichen Übertragungswege ausgehend von Patient Null zu allen anderen Personen im Netz abgezählt werden, ergibt sich eine geschätzte Anzahl von Personen, die von Patient Null ausgehend über eine realistische Zahl von Zwischenstationen angesteckt werden. Dieses Ansteckungspotenzial berechnet die Methode für jede Person in einem Netzwerk.

Dass der Ansatz, mögliche Übertragungswege zu zählen, mehr Informationen über den Verlauf von Epidemien und ihre wichtigsten Multiplikatoren liefert als bisherige Methoden, verdeutlicht Bauer anhand einer typischen Struktur innerhalb dieser Netzwerke. „Eine wichtige Rolle spielen Cluster", sagt der Mathematiker. Damit meint er kleinere oder größere Gruppen innerhalb eines Netzwerks, die untereinander stärker miteinander vernetzt sind als mit dem Rest des Netzes. So pflegen etwa die Einwohner eines Dorfes untereinander mehr Kontakte als mit Menschen außerhalb des Dorfes. Solche Cluster können einerseits ein Hindernis für die weiträumige Ausbreitung sein, da ihre Verbindung zum Rest des Netzes relativ schwach ist. Andererseits befördern sie die Ausbreitung in ihrem Innern, da zwei beliebige Mitglieder des Clusters mehrere gemeinsame Bekannte haben, über die sie sich gegenseitig indirekt infizieren können.

Durch parallele Rechnungen lassen sich auch lange Übertragungswege berücksichtigen

Die Rolle von Clustern ist also wichtig, aber es bleibt unklar, ob sie die Ausbreitung eher hemmen oder fördern. Bisherige Verfahren konnten diese Frage noch nicht klären. Da das Verfahren von Bauer und Lizier die Übertragungswege durch das Cluster zählt, berücksichtigt es diese, umgeht aber die Notwendigkeit, die Rolle der Cluster auf abstrakter Ebene zu analysieren. „Denn die Cluster wirken sich auf die Anzahl der Wege aus", sagt Bauer. Ihre Struktur sei also implizit in der Zahl der Wege enthalten. Darüber hinaus ermöglicht es das neue Verfahren aber gerade, generelle Aussagen über die Rolle der Cluster zu treffen.

Das neue Verfahren hat aber auch seine Grenzen. Am effektivsten arbeitet es für Wege, die nicht über mehr als vier Personen hinweg reichen. Bei längeren Wegen sinkt die Geschwindigkeit der Methode stark . „Allerdings ist die Rechenzeit immer noch um Größenordnungen niedriger als bei anderen Methoden, die die gleiche Präzision erreichen", sagt Lizier. Interessant wäre die Untersuchung längerer Infektionswege allemal: Wenn es sich um eine sehr infektiöse Krankheit handelt – was die Forscher durch eine größere Übertragungswahrscheinlichkeit zwischen zwei im Netzwerk benachbarten Personen simulieren können –, spielen nicht mehr nur die Eigenschaften des Netzwerks in der direkten Umgebung von Patient Null eine Rolle. Vielmehr kommen zunehmend auch die Charakteristika des Netzwerks als Ganzes zum Tragen, wie etwa die durchschnittliche Anzahl von Verbindungen einer Person zu anderen.

Obwohl die Methode von Bauer und Lizier sich umso schwerer tut, je länger die Übertragungswege sind, sieht Lizier eine Möglichkeit, auch diese schnell zu simulieren. Denn die neue Methode lasse sich parallelisieren, sagt der Forscher. Das heißt, eine Simulation der Krankheitsausbreitung in mehrere Teilaufgaben zerlegt und in einem Großrechner parallel auf viele Prozessoren verteilt werden. „So müsste man im Prinzip auch die Ausbreitung von Infektionen in Netzwerken mit Millionen von Personen in einer überschaubaren Rechenzeit simulieren können", sagt Lizier.

Ansprechpartner:
Josepf T. Lizier, PhD
Commonwealth Scientific and Industrial Research Organisation (CSIRO), Sydney
Telefon: +61 93 72-4711
E-Mail: joseph.lizier@­csiro.au
Dr. Frank Bauer
Harvard University
Telefon: +1 617 495-67132
E-Mail: bauerf80@­gmx.de
Originalpublikation:
Frank Bauer und Joseph T. Lizier
Identifying influential spreaders and efficiently estimating infection numbers in epidemic models: A walk counting approach

EPL, 5. Oktober 2012; doi: 10.1209/0295-5075/99/68007

Barbara Abrell | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/
http://www.­csiro.au

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Stammzell-Transplantation: Aktivierung von Signalwegen schützt vor gefährlicher Immunreaktion
20.04.2017 | Technische Universität München

nachricht Was Bauchspeicheldrüsenkrebs so aggressiv macht
18.04.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten