Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

UKE-Forscher entdeckt wichtigen Mechanismus der Neurodegeneration bei der Multiplen Sklerose

19.11.2012
Die Arbeit des UKE-Wissenschaftlers Dr. Manuel Friese könnte die Erforschung und Behandlungsansätze von Multipler Sklerose (MS) verändern.

Bei dieser chronischen Entzündung des Nervensystems degenerieren bislang unaufhaltsam Nervenzellen und deren Fortsätze. Jetzt beschreibt Dr. Manuel Friese in NATURE MEDICINE einen bisher unbekannten Kommunikationsweg von Nervenzellen und die Blockade desselben.

„Diese Erkenntnis könnte von therapeutischem Nutzen sein und Ausgangspunkt für die Entwicklung neuer Medikamente“, sagt Dr. Manuel Friese, Forschungsgruppenleiter am Zentrum für Molekulare Neurobiologie Hamburg (ZMNH).

„Wir konnten erstmals zeigen, dass beim Untergang von Nervenzellen im Rahmen von chronischen Entzündungen des Nervensystems wie MS ein spezielles Molekül namens TRPM4 eine zentrale Rolle spielt“, sagt Dr. Manuel Friese. Das Molekül TRPM4, dessen vollständiger Name „transient receptor potential melastatin 4“ lautet, bildet einen Ionenkanal in der Zellmembran von Nervenzellen. Durch diesen Kanal strömen Natrium-Ionen (Na+) von außen in das Innere der Zellen ein.
„Durch eine chronische Entzündung wird der Kanal dauerhaft aktiviert. Es fließen ständig Natrium-Ionen in die Zelle. Diese nimmt dann vermehrt Wasser auf, um den Ionenhaushalt im Gleichgewicht zu halten. Die unabwendbare Folge: Die Nervenzelle schwillt an und stirbt ab“, erläutert Dr. Friese. Diesen Ablauf konnte die Forschergruppe, deren Arbeit von der Gemeinnützigen Hertie-Stiftung und dem Emmy Noether-Programm der Deutschen Forschungsgemeinschaft großzügig unterstützt wird, in der Zellkultur und im Tiermodell zeigen.

Die von Dr. Friese und seinem Team geführte Studie, unter Beteiligung von Wissenschaftlern der Universitäten Genf, Göttingen, Heidelberg, Homburg und Löwen, legt damit eine gänzlich neue experimentell belegte Erklärung für die Neurodegeneration bei MS vor. Sie eröffnet eine andere Sichtweise auf das Krankheitsgeschehen und neue Ansätze für die Therapie.

In weiteren Schritten nämlich inaktivierte Dr. Friese den Ionenkanal TRPM4 im Mausmodell mit Hilfe gentechnischer Methoden bzw. blockierte ihn mit einem Wirkstoff, der in der Diabetes-Therapie eingesetzt wird. „Die Inaktivierung des Ionenkanals bewirkt, dass die Nervenzellen überleben, auch wenn die Entzündung im Nervengewebe unverändert fortschreitet. Das zeigt: Eine pharmakologische Blockade des Ionenkanals ist prinzipiell möglich und könnte von therapeutischem Nutzen sein. Damit gibt es einen Ausgangspunkt für die Entwicklung neuer Medikamente für MS und andere neurodegenerative Erkrankungen.“ Das ist eine entscheidende Erkenntnis auf dem Weg, neurodegenerative Erkrankungen erfolgreich behandeln zu können.

Kontakt:
Dr. Manuel A. Friese
Forschergruppe Neuroimmunologie
Zentrum für Molekulare Neurobiologie (ZMNH)
Universitätsklinikum Hamburg-Eppendorf
Falkenried 94
20251 Hamburg

E-Mail: manuel.friese@zmnh.uni-hamburg.de
Tel. (040) 7410-56615
Fax. (040) 7410-56598

Christine Jähn | idw
Weitere Informationen:
http://www.uni-hamburg.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics