Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Signalkodierung und Informationsverarbeitung im Gehirn: Wenige Neuronen für präzise Informationsverarbeitung nötig

04.08.2008
Tübinger Neurophysiologen veröffentlichen aktuell in Nature Neuroscience

Unser Gehirn leistet Tag für Tag Unglaubliches: es ermöglicht uns, uns in unserer Umwelt mit all ihren großen und kleinen Schwierigkeiten zurechtzufinden.

Es besteht aus vielen Milliarden kleinen Bauteilen, den Nervenzellen. Diese Nervenzellen, auch Neuronen genannt, sind die Rechenelemente, deren Aktivität komplexe Phänomene wie Denken oder Wahrnehmung produziert.

Anders als Rechenelemente in modernen Computern sind Neuronen allerdings äußerst launisch. Präsentiert man zum Beispiel einem Neuron, welches für visuelle Wahrnehmung zuständig ist, hundertmal hintereinander das gleiche Bild, wird man hundert leicht unterschiedliche Reaktionen erhalten.

... mehr zu:
»Nervenzelle »Neuron

Nach einer gängigen Theorie zählt daher im Gehirn die Aktivität eines einzelnen Neurons wenig; stattdessen nimmt man an, dass Informationen in großen Nervenzellverbünden - bestehend aus Tausenden von Neuronen - gespeichert sind, wobei jedes einzelne Neuron nur einen Bruchteil der Information liefert. Nach dieser Theorie ist das Gehirn verschwenderisch angelegt - es begnügt sich lieber mit mehreren Milliarden unzuverlässigen Bauteilen, um seine Aufgaben zu verrichten, als sich auf wenige, dafür aber zuverlässige Bauteile zu verlassen.

Maik Stüttgen und Cornelius Schwarz vom Tübinger Hertie-Institut für Klinische Hirnforschung stellen diese Ansicht mit ihrer neu erschienen Studie (Online-Vorabveröffentlichung von Nature Neuroscience) auf den Kopf. Die Tübinger Forscher fragten sich, wie viele Nervenzellen eigentlich notwendig sind, um eine relativ einfache Aufgabe zu bewerkstelligen, nämlich den Zeitpunkt eines kurzen und schwachen Sinnesreizes anzuzeigen.

Hierzu dressierten die zwei Wissenschaftler Ratten auf genau diese Aufgabe. Die Ratten sollten den Forschern den Zeitpunkt anzeigen, an dem eines ihrer Schnurrhaare (Vibrissen) bewegt wurde. Dies ist für Ratten nicht weiter schwierig - die extrem kurzsichtigen Tiere setzen ihre Schnurrhaare sehr geschickt zur räumlichen Orientierung und Objekterkennung ein, und können mit 25-30 dieser dünnen Tasthaare auf beiden Seiten der Schnauze Gegenstände ähnlich gut unterscheiden wie Menschen mit ihren fünf Fingern.

Als die Forscher jedoch die Aktivität einzelner Nervenzellen in der Großhirnrinde der Tiere beobachteten, ergab sich Überraschendes: nicht nur, dass sich lediglich ein Bruchteil der verfügbaren Zellen überhaupt die Mühe machte, die leichten Berührungen zu signalisieren. Selbst die relativ wenigen Zellen, die dies taten, zeigten nur eine minimale Reaktion, und dies auch nur für den Bruchteil einer Sekunde, genau genommen eine vierzigstel Sekunde. Im Wissenschaftsjargon wird eine derartige Informationskomprimierung als 'sparse coding' bezeichnet - d.h. Information (hier die An- oder Abwesenheit eines Reizes) wird auf eine hoch effiziente Art und Weise übermittelt.

Die Frage war nun, wie viele Neuronen theoretisch nötig sind, um die schwachen Signale, die zu nicht genau bekannten Zeitpunkten präsentiert wurden, ebenso gut wie die Ratte zu detektieren. Stüttgen und Schwarz nutzten die mathematische Maschinerie der so genannten receiver operating characteristic (ROC), einer Methode, die schon im 2. Weltkrieg zur Auswertung von Radarbildern genutzt wurde, und setzten Computersimulationen ein, um dies zu berechnen.

Das Ergebnis dieser Analyse zeigt, dass hierfür im Prinzip nur ein sehr kleiner Nervenzellverbund von fünf gleichzeitig aktiven Neuronen benötigt wird. Diese sehr kleine Zahl steht in deutlichem Kontrast zur gängigen Annahme, dass nur extrem große Nervenzellverbünde Signale verlässlich verarbeiten können.

Diese Resultate haben weitreichende Konsequenzen für unser Verständnis von Signalkodierung und Informationsverarbeitung im Gehirn.

Das Ergebnis zeigt, dass nur wenige Neuronen nötig sind, um Informationen extrem präzise und zuverlässig verarbeiten können. In Verbindung mit der gigantischen Zahl von möglicherweise Hundert Milliarden Nervenzellen des menschlichen Gehirns bedeutet dies, dass die Informationskapazität dieses biologischen Apparats noch größere Ausmaße besitzt als bislang erahnt.

Titel der Originalarbeit
Stüttgen M.C. and Schwarz C. (2008) Psychophysical and neurometric detection performance under stimulus uncertainty. Nat. Neurosci. DOI 10.1038/nn.2162
Ansprechpartner für nähere Informationen:
Universitätsklinikum Tübingen
Zentrum für Neurologie, Hertie-Institut für klinische Hirnforschung
PD Dr. Cornelius Schwarz
Otfried Müller Str. 27, 72076 Tübingen
Tel. 07071/29-8 04 62, Fax 07071/29-57 24
E-Mail: cornelius.schwarz@uni-tuebingen.de

Dr. Ellen Katz | idw
Weitere Informationen:
http://www.medizin.uni-tuebingen.de/
http://www.hih-tuebingen.de/en/departments/kn/forschung0/active-perception-lab/

Weitere Berichte zu: Nervenzelle Neuron

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Herzerkrankungen: Wenn weniger mehr ist
30.03.2017 | Universitätsspital Bern

nachricht Stoßlüften ist besser als gekippte Fenster
29.03.2017 | Technische Universität München

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE