Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Therapie bei Schlaganfall?

17.09.2012
Ceroxid-Nanopartikel könnten die Folgen eines ischämischen Hirninfarkts mindern

Bei der häufigsten Form des Hirnschlags kommt es zu einer plötzliche Minderdurchblutung des Gehirns, einer Ischämie, die zu einer Minderversorgung mit Sauerstoff und Nährstoffen führt. Dieser sogenannte ischämische Schlaganfall gehört in den Industriestaaten zu den führenden Invaliditäts- und Todesursachen.


Ceriumoxid-Nanopartikel schützten Rattenhirne nach einem Schlaganfall vor Schäden durch reaktive Sauerstoffverbindungen.

(c) Wiley-VCH

Wird er nicht augenblicklich therapeutisch beseitigt, können Hirnareale absterben. Koreanische Forscher schlagen in der Zeitschrift Angewandte Chemie nun einen Ansatz für eine ergänzende Therapie vor: Ceroxid-Nanopartikel sollen die bei einer Ischämie entstehenden reaktiven Sauerstoffverbindungen, Ursache für das Absterben von Zellen, abfangen.

Während einer Minderdurchblutung von Hirnarealen kommt es zur Bildung und Ansammlung von reaktiven Sauerstoffverbindungen, wie Superoxid-Radikalanionen (O2• –), Wasserstoffperoxid (H2O2), und Hydroxyl-Radikalen (HO• –). Diese Spezies verursachen oxidative Schäden und sind verantwortlich für Verletzungen des Gewebes und das Absterben von Zellen während des Hirninfarkts. Nervenverbindungen und neurovaskuläre Einheiten werden zerstört und die Funktion des Gehirns in diesen Bereichen beendet. Trotz verschiedener Therapien, die vor allem die Ursachen der Minderdurchblutung, wie Thrombosen, bekämpfen, gibt es bisher noch keine Möglichkeit, die Nerven gegenüber den oxidativen Schäden nach einem akuten ischämischen Schlaganfall zu schützen. Nanopartikel aus Ceroxid könnten einen neuen Ansatz für eine Therapie darstellen, hoffen Seung-Hoon Lee, Taeghwan Hyeon und ihr Team von der Seoul National University.

In der Zelle gibt es Enzyme, die reaktive Sauerstoffspezies abbauen können: Superoxid-Dismutasen, die Superoxid-Anionen zu Wasserstoffperoxid umwandeln und Katalase, die Wasserstoffperoxid spaltet. Ceroxid-Nanopartikel können beides. Der Grund: Im Ceroxid-Kristall liegt Cer als Ce4+ vor. Wenn die Partikelgröße aber in den Bereich weniger Nanometer reduziert wird, entstehen an der Oberfläche Stellen, an denen Sauerstoffatome fehlen, hier liegt Ce3+ vor, das sich leicht wieder zu Ce4+ oxidieren lässt und reversibel Sauerstoff binden kann.

Die Forscher behandelten Zellkulturen mit einer Substanz, die die Konzentration reaktiver Sauerstoffspezies erhöht, was zu einem vermehrten Absterben der Zellen führt. Eine Behandlung mit Ceroxid-Nanopartikeln verbesserte die Überlebensrate drastisch. Im Tierversuch lösten sie dann einen ischämischen Schlaganfall bei Ratten aus. Intravenös gespritzte Ceroxid-Nanopartikel konnten das Hirninfarktvolumen und die Nervenschädigungen deutlich reduzieren. Voraussetzung ist eine optimale, fein austarierte Dosis.

Interessanterweise waren die Konzentrationen der Ceroxid-Nanopartikel in gesunden Hirnbereichen sehr niedrig, in den ischämischen dagegen drastisch erhöht. Die Forscher vermuten, dass Ceroxid-Nanopartikel eine intakte Blut-Hirn-Schranke kaum passieren können, in ischämischen Bereichen ist diese jedoch zerstört, sodass erkrankte Hirnareale erreicht und der oxidative Schaden dort gestoppt werden kann.

Angewandte Chemie: Presseinfo 36/2012

Autor: Taeghwan Hyeon, Seoul National University (Korea), http://nanomat.snu.ac.kr/index.php?mid=Director

Angewandte Chemie, Permalink to the article: http://dx.doi.org/10.1002/ange.201203780

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

Dr. Renate Hoer | GDCh
Weitere Informationen:
http://presse.angewandte.de/

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics