Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Nervenzellen aus Fehlentscheiden lernen

19.02.2009
Wenn wir vor ungewohnten Situationen stehen, müssen die Nervenzellen in unserem Gehirn lernen, sich richtig zu entscheiden.

Wie sie dies tun und wie sie aus Fehlern lernen, versuchen zwei Mathematiker der Universität Bern mit einem neuen Modell zu erklären, das nun publiziert wird.

Alle unsere Entscheidungen beruhen auf der Aktivität tausender Nervenzellen im Gehirn. Viele dieser Entscheide werden routinemässig getroffen. Stehen wir jedoch vor neuen Situationen, sind die Nervenzellen in unserem Hirn in der Lage, das richtige Verhalten zu lernen. Sie passen sich aufgrund von Erfolg oder Misserfolg einer Entscheidung an, um so das nächste Mal in der gleichen oder einer ähnlichen Situation die Chancen auf richtiges Verhalten zu erhöhen. Herkömmliche Modelle scheitern an der Erklärung, wie dieser Lerneffekt abläuft:

Es ist nicht klar, welche der etwa einer Billion Neuronen im Hirn zu einer richtigen Entscheidung beigetragen haben und damit eine Belohnung erhalten sollen. Robert Urbanczik und Walter Senn vom Institut für Physiologie der Universität Bern haben nun einen Lösungsansatz zu diesem Problem entwickelt. Ihr mathematisches Modell wurde in der Fachzeitschrift "Nature Neuroscience" veröffentlicht.

Neuronen entscheiden demokratisch

Entscheide werden im Gehirn von einem ganzen Netzwerk von Neuronen gefällt, wobei alle Zellen ähnliche Informationen erhalten. Die Mehrheit der Neuronen bestimmt auf demokratische Weise, welcher Entscheid getroffen wird. Nachher wird ein Signal ausgesendet, das den Nervenzellen mitteilt, ob die Entscheidung richtig oder fehlerhaft war.

Bisherige Modelle gehen davon aus, dass alle Neuronen das gleiche Signal erhalten: ein Erfolgssignal bei einer richtigen, ein Misserfolgssignal bei einer fehlerhaften Entscheidung. "Das ist, als ob die Lehrerin den Schülern nur mitteilen würde, dass sie als ganze Klasse nicht bestanden habe. Wenn die Klasse gross ist, stehen damit die Chancen schlecht, überhaupt etwas zu lernen", erläutert Senn.

Wer falsch entscheidet, muss sich anpassen

Das Modell der beiden Berner Mathematiker geht nun noch einen Schritt weiter: Damit das Gehirn auf zuverlässige Weise gewisse Alltagsentscheide lernt, müssen die einzelnen Nervenzellen im Entscheidungsnetzwerk herausfinden können, ob sie sich richtig oder falsch verhalten haben.

Folgt auf einen Entscheid hin ein Misserfolgssignal, und war ein Neuron gleicher Meinung wie die Mehrheit, muss es seine Meinung ändern. Wich seine Meinung bei einer fehlerhaften Entscheidung von der Mehrheit ab, hat es sich folglich richtig verhalten und muss sich nicht anpassen. Das ist die Rechnung, die jedes Neutron durchführen muss.

Sie kann mit einfachen zellulären Prozessen realisiert werden. Ob ein Erfolg oder Misserfolg erzielt wurde, kann den Neuronen durch das Ausschütten eines bestimmten Neuromodulators (z. B. Dopamin) mitgeteilt werden. Ein anderer Modulator repräsentiert die Mehrheitsmeinung. Neuromodulatoren sind körpereigene Substanzen, welche die Erregungsbereitschaft von Nervenzellen beeinflussen können.

Quellenangabe: Robert Urbanczik und Walter Senn: Reinforcement learning in a population of spiking neurons. Nature Neuroscience, 2009, doi:10.1038/nn.2264.

Nathalie Matter | idw
Weitere Informationen:
http://www.unibe.ch
http://www.nature.com/neuro/journal/vaop/ncurrent/full/nn.2264.html
http://www.kommunikation.unibe.ch/content/medien/medienmitteilungen/news/2009/ne...

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik