Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mathematik hilft Dosis in der Computertomographie zu senken

25.11.2009
Siemens entwickelt neuartige Methode zur iterativen Rekonstruktion von CT-Bildern

Exzellente Bildqualität bei niedrigstmöglicher Strahlenbelastung für den Patienten ist eine wesentliche Forderung an die Computertomographie (CT).

Reduziert man einfach die Dosisapplikation, führt das allerdings in der Regel zu erhöhtem Bildrauschen und damit zu Verlust an Bildqualität. Um bei geringerer Dosis dennoch Aufnahmen hoher Qualität zu erzeugen, hat Siemens Healthcare „Iterative Reconstruction in Image Space (IRIS)“ entwickelt.

Ein CT macht eine Vielzahl von Röntgenaufnahmen aus verschiedenen Richtungen und errechnet daraus die klinischen Bilder, die der Arzt analysiert. Der neuartige Algorithmus IRIS für die Rekonstruktion der Schnittbilder aus den CT-Rohdaten nutzt die in den Ursprungsdaten steckende Information besser aus und läuft trotz zusätzlicher Rekonstruktionsschritte wesentlich schneller ab als bisherige Ansätze für das iterative Verfahren.

Wenn man IRIS mit der derzeitigen Standardmethode zur Bildrekonstruktion, der Filtered Back Projection (FBP), vergleicht, hat der Anwender des Siemens-Verfahrens zwei Optionen: Er kann dieselbe Bildqualität wie mit FBP erzeugen und dabei die Dosis um bis zu 60 Prozent reduzieren oder die Dosis beibehalten und dafür eine deutlich bessere Bildqualität als mit FBP erzeugen.

IRIS wird derzeit bereits an mehreren Universitätskliniken getestet. Ab dem zweiten Quartal 2010 werden die meisten Systeme der Somatom-Definition-Familie mit dem neuen Verfahren ausgestattet sein.

Bei modernen Spiral-CT-Geräten wird der Patient in einer vorgegebenen Geschwindigkeit durch die Gantry (Ringtunnel) gefahren, während die Röntgenstrahler-Detektor-Kombination kontinuierlich um seinen Körper rotiert. Aus der Abschwächung der Strahlung beim Durchlaufen des Körpers werden mittels mathematischer Verfahren die Abschwächungskoeffizienten in der Querschnittsebene sowie die räumliche Verteilung der Dichte errechnet. Aus diesen Messwerten, den Rohdaten, werden die klinischen Bilder für verschiedene Ebenen im Raum, wie axial, frontal, sagittal et cetera, rekonstruiert. Als Standard-Rekonstruktionsmethode wird derzeit Filtered Back Projection (FBP) verwendet, ein Algorithmus, mit dem durch Filterung und anschließende Rückprojektion in die Bildebene die gewonnenen Rohdaten in Bilddaten umgesetzt werden. Dabei muss ein Kompromiss eingegangen werden zwischen räumlicher Bildauflösung, also Bildqualität, und Bildrauschen. Soll das Bildrauschen gesenkt werden, um ein bessere Bildqualität zu erhalten, muss die Dosis erhöht werden.

Schon in den 1970er Jahren wurde die iterative Rekonstruktion als vielversprechende Methode beschrieben, klinische Bilder mit geringem Rauschanteil zu erzeugen. Bei diesem Verfahren lässt man für den Bilderzeugungsprozess eine „Korrekturschleife“ einfließen, in der die Schnittbilder schrittweise durch eine allmähliche Annäherung an die tatsächliche Dichteverteilung errechnet werden. Dazu wird zunächst eine Annahme über die Dichteverteilung der zu untersuchenden Gewebeschichten getroffen und ein Ausgangsbild berechnet. Aus diesem Ausgangsbild werden neue, synthetische Projektionsdaten erzeugt und mit den tatsächlich aufgenommenen “echten“ Messrohdaten verglichen. Stimmen sie nicht überein, wird ein entsprechendes Korrekturbild berechnet, mit dessen Hilfe das Ausgangsbild korrigiert wird. Dann werden erneut Projektionsdaten synthetisiert und mit den gemessenen Rohdaten verglichen. Diese Iteration wird so lange fortgesetzt, bis ein definiertes Abbruchkriterium erfüllt ist. Danach ist im korrigierten Bild die räumliche Bildauflösung in kontrastreichen Regionen erhöht, das Bildrauschen in gering kontrastierten Arealen ist dagegen reduziert. Das Bild wird in dichte-homogenen Geweberegionen weicher, während kontrastreiche Gewebegrenzen erhalten bleiben. Bildauflösung und Bildrauschen sind entkoppelt. Diese Methode bringt allerdings ein Problem mit sich: Bei der Berechnung der synthetischen Projektionsdaten muss das Mess-System des CT-Gerätes mathematisch genau nachgebildet werden, was sehr rechenaufwändig ist.

Zudem ist eine große Zahl von Iterationen erforderlich. Damit nehmen die Rechenzeit für die Rekonstruktion und die Anforderungen an die Computerkapazitäten derartig zu, dass das Verfahren in der klinischen Praxis nicht anwendbar ist.

Eine Lösung schien bisher die „Statistische iterative Rekonstruktion“ zu sein. Um die langen Rechenzeiten zu vermeiden, wird dabei auf die genaue mathematische Modellierung des Mess- Systems verzichtet und die Anzahl der Iterationsläufe stark reduziert. Auf Basis eines einfachen statistischen Korrekturmodells, das nur die Rauscheigenschaften der Messdaten berücksichtigt, wird ein großer Anteil des Rauschens entfernt. Diese aggressive Methode beschleunigt zwar eine rauschfreiere Rekonstruktion des Bildes enorm, erzeugt aber Schnittbilder, die in ihrem Bildeindruck derartig von den Ergebnissen der Standards FBP abweichen können, dass die Radiologen möglicherweise irritiert werden.

Der Rekonstruktionsalgorithmus Iterative Reconstruction in Image Space (IRIS) von Siemens Healthcare verfolgt im Vergleich zur „Statistischen iterativen Rekonstruktion“ einen anderen Ansatz zur Beschleunigung der Bildrekonstruktion. Es werden Schnittbilddaten errechnet, ohne sie immer wiederkehrend mit den Rohdaten vergleichen zu müssen. Kern des innovativen Ansatzes ist, dass beim ersten Rekonstruktionslauf jegliche Bildinformation vom nur langsam zu verarbeitenden Rohdatenbereich in den weniger aufwändig zu berechnenden Bilddatenbereich überführt wird. Das dabei entstehende „Masterbild“ enthält jedoch erhebliches Bildrauschen, das in den folgenden iterativen Schritten im Bilddatenbereich aus dem Masterbild entfernt wird. Das Bild wird auf diese Weise in kleinen aufeinanderfolgenden Schritten sukzessive von Bildrauschen und Artefakten befreit, ohne die Bildschärfe zu beeinträchtigen. So werden auch zeitaufwändige Rückprojektionen vermieden. Durch diesen neuartigen Ansatz können die Siemens-Experten mit relativ geringem Rechenaufwand und auf einfache Weise aus den Rohdaten eines CT-Scans eine äußerst genaue Abbildung der tatsächlichen Eigenschaften des endgültigen Bildes rekonstruieren. Mit IRIS ist mit einer bis zu 60 Prozent reduzierten Dosis dasselbe Signal-Rauschverhältnis zu erreichen wie mit Filtered Back Projection (FBP) bei voller Dosis.

Mit dem neuen Algorithmus lässt sich also die Dosis ohne Qualitätseinbuße deutlich reduzieren. Alternativ kann die Iterative Rekonstruktion von Siemens bei gleichbleibender Dosis die Bildqualität des rekonstruierten Bildes deutlich erhöhen. Das bestätigt auch U. Joseph Schoepf, MD, Professor of Radiology and Cardiology, Director of CT Research and Development, Medical University of South Carolina, USA: “Mit dem Verfahren Iterative Reconstruction in Image Space bin ich in der Lage, bis zu 60 Prozent Dosis bei einer ganzen Reihe von Routine-Anwendungen zu sparen und gleichzeitig die gewohnte ausgezeichnete Bildqualität beizubehalten.“

„Bei Siemens Healthcare haben Strahlenschutz und Dosisreduktion in der CT höchste Priorität, und zwar schon seit das Unternehmen 1974 den ersten Computertomographen (CT) auf den Markt brachte. Wir haben bereits eine ganze Reihe technischer Innovationen an unseren CTs eingeführt, die zur Dosisreduktion beitragen“, sagte Dr. Sami Atiya, CEO Computertomographie von Siemens Healthcare. „Mit IRIS können wir bei den meisten CT-Untersuchungen die Strahlenexposition deutlich senken.“

Der Siemens-Sektor Healthcare ist weltweit einer der größten Anbieter im Gesundheitswesen und führend in der medizinischen Bildgebung, Labordiagnostik, Krankenhaus-Informationstechnologie und bei Hörgeräten. Siemens bietet seinen Kunden als einziges Unternehmen Produkte und Lösungen für die gesamte Patientenversorgung unter einem Dach – von der Prävention und Früherkennung über die Diagnose bis zur Therapie und Nachsorge. Durch eine Optimierung der klinischen Arbeitsabläufe, die sich an den wichtigsten Krankheitsbildern orientiert, sorgt Siemens zusätzlich dafür, dass das Gesundheitswesen schneller, besser und gleichzeitig kostengünstiger wird. Siemens Healthcare beschäftigt weltweit rund 49.000 Mitarbeiter und ist in über 130 Ländern präsent. Im Geschäftsjahr 2008 (bis 30. September) erzielte der Sektor einen Umsatz von 11,2 Milliarden Euro und ein Ergebnis von 1,2 Milliarden Euro.

Marion Bludszuweit | Siemens Healthcare
Weitere Informationen:
http://www.siemens.com/healthcare
http://www.siemens.com/med-bilder/IRIS

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz im Kampf gegen Prostatakrebs entdeckt
24.05.2018 | Universität Bern

nachricht Die neue Achillesferse von Blutkrebs
22.05.2018 | Ludwig Boltzmann Gesellschaft

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Im Focus: Achema 2018: Neues Kamerasystem überwacht Destillation und hilft beim Energiesparen

Um chemische Gemische in ihre Einzelbestandteile aufzutrennen, ist in der Industrie die energieaufwendige Destillation gängig, etwa bei der Raffinerie von Rohöl. Forscher der Technischen Universität Kaiserslautern (TUK) entwickeln ein Kamerasystem, das diesen Prozess überwacht. Dabei misst es, ob es zu einer starken Tropfenbildung kommt, was sich negativ auf die Trennung der Komponenten auswirken kann. Die Technik könnte hier künftig automatisch gegensteuern, wenn sich Messwerte ändern. So ließe sich auch Energie einsparen. Auf der Prozesstechnik-Messe Achema in Frankfurt stellen sie die Technik vom 11. bis 15. Juni am Forschungsstand des Landes Rheinland-Pfalz (Halle 9.2, Stand A86a) vor.

Bei der Destillation werden Flüssigkeiten durch Verdampfen und darauffolgende Kondensation des Dampfes in ihre Bestandteile getrennt. Ein bekanntes Beispiel...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Ansatz im Kampf gegen Prostatakrebs entdeckt

24.05.2018 | Medizin Gesundheit

Konventionelle Antibiotika-Therapie ergänzen

24.05.2018 | Biowissenschaften Chemie

Vom Stroh zum Energieträger: Eintopf-Rezept für Wasserstoffgewinnung

24.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics