Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum man sich an Unerwartetes besser erinnert

25.02.2010
Unerwartete Ereignisse aktivieren das Belohnungszentrum im Gehirn - daher speichert es solche Eindrücke besser ab.

Diese Hypothese konnten Neurowissenschaftler der Universität Bonn jetzt in einer Patientenstudie bekräftigen: Wenn die Probanden sich Bilder einprägten, die nicht zu einem bestimmten Konzept passten, war das Belohnungszentrum im Gehirn aktiver als bei den herkömmlichen Bildern. Die Studie in Zusammenarbeit mit den Universitäten Köln, Freiburg und Davis (Kalifornien) wurde heute in dem Fachmagazin "Neuron" veröffentlicht.

Ereignisse werden dann besonders gut abgespeichert, wenn das Gedächtniszentrum starke Signale aus dem Belohnungszentrum erhält - und das ist nicht nur bei tatsächlich belohnungsrelevanten, sondern auch bei unerwarteten Ereignissen offensichtlich der Fall. Das Forscherteam um Dr. Nikolai Axmacher von der Klinik für Epileptologie der Universität Bonn untersuchte bei Patienten die Aktivität von zwei Gehirnregionen: zum einen die des Nucleus accumbens, einem Teil des Belohnungszentrums, zum anderen die Aktivität des Hippocampus, dem Gedächtniszentrum. "Die Ergebnisse bestätigen, dass die beiden Gehirnregionen miteinander wechselwirken", erklärt Dr. Nikolai Axmacher, "und zwar bei unerwarteten Ereignissen besonders stark." Daher könne man sich an Unvorhergesehenes hinterher besser erinnern.

"Stellen Sie sich vor, Sie stehen morgens auf und alles passiert wie immer", erläutert Dr. Axmacher. "Sie kaufen sich einen Kaffee, fahren zur Arbeit und setzen sich an den Computer - dann ist es unwahrscheinlich, dass Sie sich später noch an viele Details erinnern." Geschehe allerdings etwas Unerwartetes - egal, ob positiv oder negativ - sehe das ganz anders aus: "Wenn Sie sich Kaffee über die Hose schütten oder einen Kaffee geschenkt bekommen, dann ist es sehr viel wahrscheinlicher, dass Sie sich später noch daran erinnern", sagt der Mediziner.

Dieser Effekt ist schon länger bekannt. Bisher war aber unklar, wie das Gehirn das bewerkstelligt. Die Hypothese: Zunächst überprüft der Hippocampus, ob das eingetroffene Ereignis mit der Erwartungshaltung übereinstimmt und gibt diese Information an den Nucleus accumbens weiter. Dort wird daraufhin der Botenstoff Dopamin ausgeschüttet, und zwar umso mehr, je stärker das Ereignis von der Erwartungshaltung abweicht. Je mehr Dopamin ausgeschüttet wird, umso wahrscheinlicher ist es, dass der Hippocampus das Ereignis ins Langzeitgedächtnis überschreibt.

Dem Gehirn bei der Arbeit zugeschaut

Das Forscherteam um Dr. Nikolai Axmacher untersuchte jetzt erstmals die beteiligten Gehirnregionen am Menschen direkt: an Patienten, die gegen Epilepsie oder schwere Depressionen behandelt wurden und denen daher Elektroden ins Gehirn eingesetzt worden waren. Acht Epilepsiepatienten mit Elektroden im Hippocampus und sechs Depressionspatienten mit Elektroden im Nucleus accumbens nahmen an der Studie teil.

Die Probanden sollten sich Bilder auf einem Computerbildschirm einprägen, und zwar Bilder mit Gesichtern auf rotem Hintergrund und Bilder mit Häusern auf grünem Hintergrund. Dabei war stets die eine Art von Bildern deutlich in der Überzahl, die andere Art von Bildern wurde viel seltener gezeigt und kam daher unerwartet für die Probanden. Waren die Gesichter auf rotem Hintergrund besonders häufig, dann konnten sich die Patienten hinterher tatsächlich etwa anderthalbmal besser an die Häuser auf grünem Hintergrund erinnern und umgekehrt.

"Wir haben während der Einprägungsphase die Aktivität in den beteiligten Gehirnregionen gemessen", erklärt Dr. Axmacher, "und dabei im Hippocampus zwei Potenziale registriert, ein frühes Signal bei 187 Millisekunden und ein spätes bei 482 Millisekunden." Beide Signale waren deutlich stärker, wenn sich die Probanden die unerwarteten Bilder einprägten - in diesem Fall war also der Hippocampus aktiver. Im Nucleus accumbens fanden die Forscher ein spätes Potenzial bei 475 Millisekunden, auch hier war das Signal bei unerwarteten Bildern höher als bei der konventionellen Art von Bildern.

Hypothese bestätigt

"Diese Ergebnisse unterstützen die Hypothese perfekt", sagt Dr. Axmacher. "Das Gedächtniszentrum vergleicht die tatsächliche Situation mit der erwarteten - das ist das frühe Signal im Hippocampus." Das Gedächtniszentrum aktiviert durch sein Potenzial den Nucleus accumbens als Teil des Belohnungszentrums. Vermutlich schüttet dieses daraufhin Dopamin aus, und dieser Botenstoff aktiviert dann wieder das Gedächtniszentrum. Das späte Signal im Hippocampus ist dann die Reaktion auf die Antwort aus dem Nucleus accumbens.

Neue Ereignisse sind also für das Gehirn positiv, sie aktivieren das Belohnungssystem. Daher konnten sich die Probanden an die Häuser hinterher besser erinnern, wenn die Gesichter in der Überzahl waren.

Die Studie ist am 25. Februar in dem Fachmagazin "Neuron" erschienen:

N. Axmacher, M.X. Cohen, J. Fell, S. Haupt, M. Dümpelmann, C.E. Elger, T.E. Schlaepfer, D. Lenartz, V. Sturm, C. Ranganath, Intracranial EEG correlates of expectancy and memory formation in the human hippocampus and nucleus accumbens, Neuron, 2010.

Kontakt:
Dr. Nikolai Axmacher
Klinik für Epileptologie der Universität Bonn
Telefon: 0228/287-19341
E-Mail: nikolai.axmacher@ukb.uni-bonn.de

Dr. Andreas Archut | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neues Hydrogel verbessert die Wundheilung
25.04.2017 | Universität Leipzig

nachricht Konfetti im Gehirn: Steuerung wichtiger Immunzellen bei Hirnkrankheiten geklärt
24.04.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen