Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetische Zellen sollen Schäden im Körper reparieren

23.12.2008
Ein Traum der Medizin ist es, lokal begrenzte Schäden im Körper mit Hilfe gesunder Zellen zu beheben. Doch wie lässt sich verhindern, dass die Zellen nicht gleich vom Blutstrom fortgespült werden, bevor sie in das Gewebe einwachsen?

Wissenschaftler der Universität Bonn haben zusammen mit Kollegen aus München und Berlin eine Lösung dieses Problems gefunden: Sie präparierten die Hilfszellen so, dass diese sich mittels starker Magnete an die passende Stelle dirigieren ließen. Die Forscher berichten in der kommenden Ausgabe der Zeitschrift PNAS über ihre Ergebnisse.

Der Focus der Veröffentlichung liegt auf Zell- und Gentherapie. Dabei versucht man, einzelne Zellen im Körper genetisch so zu verändern, dass sie therapeutische Effekte haben. Die behandelten Zellen können dann beispielsweise Wirkstoffe erzeugen, die einen Tumor zurückdrängen. "In aller Regel möchte man sehr gezielt vorgehen, um Nebenwirkungen zu vermeiden", erklärt Professor Dr. Alexander Pfeifer vom Pharmazentrum Bonn.

Um die gewünschten Gene zu den entsprechenden Zellen zu transportieren, verwendet man "Genfähren". Häufig handelt es sich dabei um Viren. Im Grunde genommen sind das nämlich ohnehin nichts anderes als Transporter für Gene: Wenn sie auf eine passende Zelle treffen, "klammern" sie sich daran fest und injizieren ihre eigenen Erbanlagen. Dadurch programmieren sie die befallene Zelle um, die daraufhin - statt das zu tun, wofür sie eigentlich da ist - jede Menge neuer Viren produziert.

Zielgerichtete Therapien und Positionierung von Zellen

Man kann nun das Viren-Erbgut entfernen und durch "therapeutische" Gene ersetzen. Beim Infektionsvorgang gelangen diese Gene dann in die Zelle und rüsten sie mit neuen Funktionen aus. Doch dieser Vorgang braucht Zeit. Professor Pfeifer erklärt: "Sie müssen lange genug in der Nähe ihrer Zielzellen gehalten werden, um ihr Erbgut zu übertragen."

Schwierig wird das beispielsweise, wenn man den therapeutischen Virencocktail über die Blutbahn injiziert. Einerseits verteilt dieser sich dann im ganzen Körper und gelangt eventuell nicht in ausreichender Konzentration zu der Stelle, wo er hin soll. Zudem reißt der Blutstrom die Viren unter Umständen wieder fort, bevor sie ihre Genfracht injizieren können. "Wir haben die Viren daher an magnetische Partikel gekoppelt", erklärt Pfeifer. "Wenn wir von außen magnetische Felder anlegen, können wir die so modifizierten Genfähren daher an den erkrankten Stellen im Körper festhalten.

Doch nicht nur Viren lassen sich so im Körper an die passende Stelle dirigieren. Die Forscher nutzen dieses Verfahren, um Zellen magnetisch zu machen und so mit Hilfe eines Magneten an eine bestimmte Stelle zu ziehen. Pfeifer und Kollegen machten so auch Endothelzellen magnetisch - das sind Zellen, die die Blutgefäße auskleiden. "In Mäusen mit geschädigten Arterien konnten wir die Endothelzellen so genau in den geschädigten Arterien positionieren", betont Pfeifer. "Damit eröffnen sich natürlich völlig neue Therapieoptionen."

Kontakt:
Professor Dr. Alexander Pfeifer
Pharmazentrum der Universität Bonn
Telefon: 0228/73-5410 oder -11
E-Mail: alexander.pfeifer@uni-bonn.de

Dr. Andreas Archut | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Berichte zu: Arterie Blutbahn Blutstrom Endothelzelle Infektionsvorgang Magnet Virencocktail Virus Zelle

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neue Methode der Eisenverabreichung
26.04.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Bestrahlung bei Hirntumoren? Eine neue, verlässlichere Einteilung erleichtert die Entscheidung
26.04.2017 | Universitätsklinikum Heidelberg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences