Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetische Zellen sollen Schäden im Körper reparieren

23.12.2008
Ein Traum der Medizin ist es, lokal begrenzte Schäden im Körper mit Hilfe gesunder Zellen zu beheben. Doch wie lässt sich verhindern, dass die Zellen nicht gleich vom Blutstrom fortgespült werden, bevor sie in das Gewebe einwachsen?

Wissenschaftler der Universität Bonn haben zusammen mit Kollegen aus München und Berlin eine Lösung dieses Problems gefunden: Sie präparierten die Hilfszellen so, dass diese sich mittels starker Magnete an die passende Stelle dirigieren ließen. Die Forscher berichten in der kommenden Ausgabe der Zeitschrift PNAS über ihre Ergebnisse.

Der Focus der Veröffentlichung liegt auf Zell- und Gentherapie. Dabei versucht man, einzelne Zellen im Körper genetisch so zu verändern, dass sie therapeutische Effekte haben. Die behandelten Zellen können dann beispielsweise Wirkstoffe erzeugen, die einen Tumor zurückdrängen. "In aller Regel möchte man sehr gezielt vorgehen, um Nebenwirkungen zu vermeiden", erklärt Professor Dr. Alexander Pfeifer vom Pharmazentrum Bonn.

Um die gewünschten Gene zu den entsprechenden Zellen zu transportieren, verwendet man "Genfähren". Häufig handelt es sich dabei um Viren. Im Grunde genommen sind das nämlich ohnehin nichts anderes als Transporter für Gene: Wenn sie auf eine passende Zelle treffen, "klammern" sie sich daran fest und injizieren ihre eigenen Erbanlagen. Dadurch programmieren sie die befallene Zelle um, die daraufhin - statt das zu tun, wofür sie eigentlich da ist - jede Menge neuer Viren produziert.

Zielgerichtete Therapien und Positionierung von Zellen

Man kann nun das Viren-Erbgut entfernen und durch "therapeutische" Gene ersetzen. Beim Infektionsvorgang gelangen diese Gene dann in die Zelle und rüsten sie mit neuen Funktionen aus. Doch dieser Vorgang braucht Zeit. Professor Pfeifer erklärt: "Sie müssen lange genug in der Nähe ihrer Zielzellen gehalten werden, um ihr Erbgut zu übertragen."

Schwierig wird das beispielsweise, wenn man den therapeutischen Virencocktail über die Blutbahn injiziert. Einerseits verteilt dieser sich dann im ganzen Körper und gelangt eventuell nicht in ausreichender Konzentration zu der Stelle, wo er hin soll. Zudem reißt der Blutstrom die Viren unter Umständen wieder fort, bevor sie ihre Genfracht injizieren können. "Wir haben die Viren daher an magnetische Partikel gekoppelt", erklärt Pfeifer. "Wenn wir von außen magnetische Felder anlegen, können wir die so modifizierten Genfähren daher an den erkrankten Stellen im Körper festhalten.

Doch nicht nur Viren lassen sich so im Körper an die passende Stelle dirigieren. Die Forscher nutzen dieses Verfahren, um Zellen magnetisch zu machen und so mit Hilfe eines Magneten an eine bestimmte Stelle zu ziehen. Pfeifer und Kollegen machten so auch Endothelzellen magnetisch - das sind Zellen, die die Blutgefäße auskleiden. "In Mäusen mit geschädigten Arterien konnten wir die Endothelzellen so genau in den geschädigten Arterien positionieren", betont Pfeifer. "Damit eröffnen sich natürlich völlig neue Therapieoptionen."

Kontakt:
Professor Dr. Alexander Pfeifer
Pharmazentrum der Universität Bonn
Telefon: 0228/73-5410 oder -11
E-Mail: alexander.pfeifer@uni-bonn.de

Dr. Andreas Archut | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Berichte zu: Arterie Blutbahn Blutstrom Endothelzelle Infektionsvorgang Magnet Virencocktail Virus Zelle

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Innovative Antikörper für die Tumortherapie
20.02.2017 | Wilhelm Sander-Stiftung

nachricht Nervenschmerzen zukünftig wirksamer behandeln
20.02.2017 | Universität Zürich

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Der Lkw der Zukunft kommt ohne Fahrer aus

21.02.2017 | Veranstaltungen

Physikerinnen und Physiker diskutieren in Bremen über aktuelle Grenzen der Physik

21.02.2017 | Veranstaltungen

Kniffe mit Wirkung in der Biotechnik

21.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit den Betriebsräten Sozialpläne

21.02.2017 | Unternehmensmeldung

Der Lkw der Zukunft kommt ohne Fahrer aus

21.02.2017 | Veranstaltungsnachrichten

Zur Sprache gebracht: Und das intelligente Haus „hört zu“

21.02.2017 | Messenachrichten