Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Krebserkrankungen in frühen Stadien erkennen: RUB-Forscher entwickeln automatische Diagnostik

09.10.2013
„Spektrale Histopathologie“ bei Darmkrebs
RUB-Forscher entwickeln Marker-freie automatische Krebsdiagnostik

Wissenschaftler der Ruhr-Universität Bochum (RUB) haben eine neue spektroskopische Methode entwickelt, die Pathologen bei der Krebsdiagnose unterstützt.


Das Spektrum als Fingerabdruck: Durch Nutzung des Fourier-Transform-Infrarot- und des Raman-Imagings gewinnt das RUB-Team einen „spektralen Fingerabdruck“. Dieser spiegelt den momentanen Zustand der Zelle auf Proteinebene wieder. Durch Vergleich mit einer „Kartei“ kann so ein „Fingerabdruck“ dem zugehörigen „Verdächtigen“, zum Beispiel einem Darmtumor, zugeordnet werden.

Copyright: RUB, Bild: LS Biophysik


Spektrale Histopathologie: Fourier-Transform-Infrarot (FTIR)- und Raman-Imaging-Analysen von Gewebeschnitten eines kolorektalen Karzinoms (Darmtumor). Die Vergrößerung der Bilder nimmt von oben nach unten zu. Auf der rechten Seite ist der klassisch gefärbte H&E-Schnitt zu sehen (Hämatoxylin-Eosin-Färbung). Mit FTIR-Imaging (links) ist eine Auflösung bis zehn Mikrometer möglich; die spektrale Histopathologie zeigt Veränderungen in den Krypten (rot), also Einstülpungen des Darms, die eine immunohistochemische Fluoreszenzfärbung (P53) bestätigt. Um die Veränderungen einer Krypte detaillierter zu analysieren, setzten die Forscher Raman-Imaging mit höherer räumlicher Auflösung ein (untere Zeile). Die veränderten Zellkerne (grau) in den veränderten Krypten (rot) können hier im Vergleich zu einer Fluoreszenzfärbung (P53, grün) identifiziert werden.

Copyright: RUB, Bild: LS Biophysik

In den Fachzeitschriften „Journal of Biophotonics“ und „Analyst“ verglichen sie die mit der sogenannten Marker-freien „Spektralen Histopathologie“ gewonnenen Ergebnisse mit denen herkömmlicher Diagnoseverfahren am Beispiel Dickdarmkrebs.

„Im Gegensatz zu bisherigen Methoden müssen wir das Gewebe nicht mehr färben, um Krebs zu erkennen“, sagt Prof. Klaus Gerwert vom Proteinforschungskonsortium PURE (Protein Research Unit Ruhr within Europe) der RUB. „Das eröffnet die Möglichkeit, Proben in Zukunft automatisch als krankes oder gesundes Gewebe zu klassifizieren.“

Diagnose Dickdarmkrebs

Die Diagnose Dickdarmkrebs stellen Pathologen zurzeit, indem sie gefärbte dünne Gewebeschnitte aus einer Biopsie unter dem Mikroskop begutachten. Das geschieht in der Regel erst in einem fortgeschrittenen Stadium, und das Verfahren liefert keine Informationen über die molekularen Ursachen des Tumors. Die am RUB-Lehrstuhl für Biophysik etablierte Spektrale Histopathologie (SHP)-Methode erfasst hingegen direkt molekulare Veränderungen im Gewebe, insbesondere Proteinveränderungen.

Sie funktioniert ohne Marker wie zum Beispiel Fluoreszenzfarbstoffe. Veränderungen detektiert sie schon in frühen Tumorstadien. Da die Analyse mit Lichtstrahlen erfolgt, kann man sie nicht nur auf dünne Gewebeschnitte aus Biopsien anwenden, sondern mit Hilfe von Lichtleitern auch direkt das Gewebe an der zu untersuchenden Stelle analysieren. „In Zukunft wollen wir die Spektrale Histopathologie gemeinsam mit klinischen Partnern endoskopisch, also direkt am Patienten einsetzen“, so Klaus Gerwert.

So funktioniert die Spektrale Histopathologie

Für die SHP zeichnen Forscher ortsaufgelöst Vibrationsspektren des Gewebes mit einem Infrarot- oder Raman-Mikroskop auf. Ein Vibrationsspektrum reflektiert den Zustand aller Proteine im Gewebe an der gemessenen Stelle. Verändern sich die Proteine im Gewebe aufgrund von Krebs, wandelt sich auch das zugehörige Spektrum. Jedes Spektrum ist dabei so charakteristisch für die Proteinveränderung wie ein Fingerabdruck für eine Person. Für ein einzelnes Gewebebild werden insgesamt rund zehn Millionen Infrarot-Spektren aufgenommen. Mit aufwendigen bioinformatischen Bildanalyseverfahren vergleichen die Wissenschaftler diese Spektren mit einer in PURE entwickelten Datenbank von Spektren bereits bekannter Gewebe und Tumore.

Jedem Spektrum ordnet das Analyseprogramm einen in der Datenbank hinterlegten Gewebetypen zu, dargestellt durch eine bestimmte Farbe – genauso wie ein Täter durch Abgleich mit einer Datenbank anhand seines Fingerabdrucks identifiziert werden kann. Daraus ergibt sich ein ortsaufgelöstes annotiertes Bild des Darmgewebeschnitts. Die beiden PURE-Mitglieder Prof. Andrea Tannapfel, Direktorin des Instituts für Pathologie der RUB, und Prof. Dr. Axel Mosig, Leiter der Bioinformatik am Lehrstuhl Biophysik, waren maßgeblich daran beteiligt, die Datenbank und den Auswertalgorithmus zu erstellen. Das Auswertprogramm läuft mittlerweile auf einem handelsüblichen Laptop.

Vergleich mit klassischen Methoden zur Tumorerkennung

Um die Sensitivität und Spezifizität der Spektralen Histopathologie zu prüfen, verglich das RUB-Team die SHP-Ergebnisse mit klassischen immunohistochemischen Verfahren, bei denen Tumore durch Fluoreszenzmarker identifiziert werden. „Die Ergebnisse stimmten exzellent überein. Das zeigt eindrucksvoll, dass die Spektrale Histopathologie Änderungen der Gewebezusammensetzung hoch sensitiv und automatisiert nachweisen kann“, sagt Prof. Gerwert.

Die Sensitivität und Spezifität der SHP liegen bereits über 95 Prozent und soll möglichst nah an 100 Prozent geführt werden. Durch Erweiterung auf das Raman-Imaging erzielte das RUB-Team eine höhere räumliche Auflösung im Vergleich zum Infrarot-Imaging, allerdings auf Kosten einer längeren Messzeit. „Beide Methoden ergänzen sich hervorragend“, so Klaus Gerwert. „Die Infrarot-Spektroskopie gibt schnell einen Überblick über den gesamten Gewebeschnitt. Mit Raman-Imaging können wir dann verdächtige Regionen genauer analysieren.“ Die Raman-Analyse detektiert etwa veränderte Zellkerne, die für Tumore charakteristisch sind.

Projektförderung

Fördermittel für das Projekt stammen vom Land NRW im Rahmen des Europäischen Proteinforschungsinstituts PURE, dessen Sprecher Prof. Gerwert ist.

Titelaufnahmen

A. Kallenbach-Thieltges, F. Großerüschkamp, A. Mosig, M. Diem, A. Tannapfel, K. Gerwert (2013): Immunohistochemistry, histopathology and infrared spectral histopathology of colon cancer tissue sections, Journal of Biophotonics, DOI: 10.1002/jbio.201200132

L. Mavarani, D. Petersen, S.F. El-Mashtoly, A. Mosig, A. Tannapfel, C. Kötting, K. Gerwert (2013): Spectral Histopathology of colon cancer tissue sections by Raman imaging with 532 nm excitation provides label free annotation of lymphocytes, erythrocytes and proliferating nuclei of cancer cells, Analyst, DOI: 10.1039/C3AN00370A

Weitere Informationen

Prof. Dr. Klaus Gerwert, Lehrstuhl Biophysik, Fakultät für Biologie und Biotechnologie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-24461, E-Mail: gerwert@bph.rub.de

Angeklickt

RUBIN-Artikel zur Spektralen Histopathologie
http://www.ruhr-uni-bochum.de/rubin/rubin-fruehjahr-13/beitraege/beitrag3.html
PURE
http://www.pure.rub.de/
Redaktion: Dr. Julia Weiler

Jens Wylkop | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Verschwindende Äderchen: Diabetes schädigt kleine Blutgefäße am Herz und erhöht das Infarkt-Risiko
23.03.2017 | Technische Universität München

nachricht Ein Knebel für die Anstandsdame führt zu Chaos in Krebszellen
22.03.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise