Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heisse Nanopartikel für Krebstherapien

24.03.2014

Nanopartikel besitzen ein grosses Potenzial in der Medizin: für die Diagnostik, als Wirkstoffvehikel oder als Werkzeug, um Tumorzellen mittels Hitze den Garaus zu machen. ETH-Forschende haben nun Partikel entwickelt, die einfach herzustellen und vielfältig einsetzbar sind.

Schliesst man die Hand um eine Taschenlampe, scheint die Hand rot zu leuchten. Das liegt daran, dass langwellige rote Lichtstrahlen besser durch menschliches Gewebe dringen als kurzwelliges blaues Licht.

Diesen Umstand machen sich ETH-Forschende bei einer neuen Art von Nanopartikeln zunutze: Diese sogenannten plasmonischen Partikel absorbieren Licht im nahen Infrarot-Bereich und heizen sich dabei auf. So könnten sie beispielsweise Tumorgewebe durch Hitze abtöten.

Für solche therapeutisch eingesetzten Nanopartikel ist Gold ein beliebtes Material. Es ist gut verträglich und ruft in der Regel keine unerwünschten Reaktionen hervor. In der für Nanopartikel typischen Kugelform hat Gold jedoch nicht die nötigen Eigenschaften, um als plasmonischer Partikel zu funktionieren, der genug Licht im Infrarotbereich absorbiert, um sich aufzuheizen.

Dazu muss es in eine spezielle Form gebracht werden, zum Beispiel in Stäbchen- oder Schalenform. Dadurch nehmen die Goldatome eine Konfiguration ein, die Licht nahe des Infrarotbereichs absorbiert und Wärme erzeugt. Solche Nanostäbchen oder -schalen in ausreichender Menge herzustellen, ist aber aufwändig und teuer. 

Aggregate statt Stäbchen

Ein Forscherteam unter der Leitung von Sotiris Pratsinis, Professor für Partikeltechnologie am Institut für Verfahrenstechnik, hat nun einen Trick gefunden, plasmonische Goldteilchen in grosser Menge herzustellen. Sie nutzten ihr vorhandenes Know-how für plasmonische Partikel und stellten kugelförmige Goldpartikel her, welche die gewünschten nahe-Infrarot plasmonischen Eigenschaften besitzen: dazu liessen sie die Partikel aggregieren.

Zuvor wurde jedes einzelne Teilchen mit einer Siliziumdioxid-Schicht überzogen, die als Platzhalter zwischen den einzelnen Kugeln im Aggregat dienten. Durch den genau bestimmten Abstand zwischen mehreren Goldpartikeln bringen die Forschenden die Teilchen in eine Konfiguration, die Infrarotlicht absorbiert und Hitze erzeugt.

«Die Siliziumdioxid-Hülle hat noch einen weiteren Vorteil», erklärt Georgios Sotiriou, Erstautor der Studie, bis vor kurzem Postdoc bei Pratsinis und inzwischen Forscher an der Harvard Universität. «Sie verhindert, dass sich die Teilchen beim Erwärmen verformen.» Dies sei insbesondere bei Nanostäbchen ein Problem. Verlieren die Stäbchen beim Erhitzen mit Infrarotlicht ihre Form, verlieren sie die spezifisch gewünschten plasmonischen Eigenschaften und können nicht mehr genug Licht im nahen Infrarotbereich absorbieren.

Die Forschenden testeten die neuen Partikel bereits an Brustkrebszellen in der Petrischale und konnten nachweisen, dass sich die Nanoteilchen nach Bestrahlung mit Infrarotlicht genug erwärmten, um die Zellen abzutöten. Dagegen überlebten Zellen in Kontrollversuchen: mit Partikeln, aber ohne Bestrahlung, sowie mit Bestrahlung, aber ohne Nanoteilchen.

Kombination mit grossem Potenzial

Um die Partikel gezielt zu Krebsgewebe lenken zu können, mischten die Forschenden zusätzlich superparamagnetische Eisenoxid-Partikel unter die Goldteilchen. Dadurch lassen sich die Nanoaggregate durch Magnetfelder steuern und könnten so in einem Tumor angereichert werden. Ausserdem eröffnet sich damit die Möglichkeit, die Aggregate in tiefliegenden Gewebeschichten, wohin auch Infrarotlicht nicht mehr vordringt, durch Magnet-Hyperthermie aufzuheizen. Dabei wird Wärme erzeugt, indem ein Magnetfeld, dessen Plus- und Minuspole in schnellem Rhythmus abwechseln.

«Bis die Partikel im Menschen zum Einsatz kommen, sind noch viele Fragen zu klären», sagt Jean-Christophe Leroux, Professor für Drug Formulation and Delivery am Institut für Pharmazeutische Wissenschaften und ebenfalls an der Forschungsarbeit beteiligt. Zwar seien Gold, Siliziumoxid und Eisenoxid gut verträglich, dennoch müsse untersucht werden, was mit den Partikelaggregaten im Körper im Laufe der Zeit geschehe, ob sie sich beispielsweise in der Leber ansammelten oder zerfallen und ausgeschieden würden.

Die Eisenoxid-Gold-Nanopartikel können nicht nur Tumorzellen durch Hitze abtöten, sie könnten auch als Kontrastmittel für bildgebende Verfahren in der Diagnostik per Magnetresonanztomographie genutzt werden, was in einer Kollaboration mit dem Universitätsspital Zürich geprüft wird, oder sie könnten als Bestandteil von Wirkstoffvehikeln dienen. «Man könnte die Teilchen mit temperatursensitiven Wirkstoffträgern koppeln, die das gewünschte Medikament dann freisetzen, wenn eine bestimmte Temperatur überschritten wird», erklärt Sotiriou. Die Nanopartikel könnten über Magnetfelder an den gewünschten Ort im Körper, zum Beispiel zu einem erkrankten Organ, gelenkt und dort ein Medikament gezielt freisetzen. Dadurch liessen sich unerwünschte Nebenwirkungen auf den Rest des Körpers reduzieren oder sogar vermeiden.

Literaturhinweis:
Sotiriou GA, Starsich F, Dasargyri A, Wurnig MC, Krumeich F, Boss A, Leroux JC, Pratsinis SE: Photothermal Killing of Cancer Cells by the Controlled Plasmonic Coupling of Silica-Coated Au/Fe2O3 Nanoaggregates. Adv. Funct. Mater., January 13, 2014. DOI: 10.1002/adfm.201303416

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2014/03/heisse-nan...

Angelika Jacobs | ETH Zürich

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Schwere Infektionen bei Kindern auch in der Schweiz verbreitet
26.07.2017 | Universitätsspital Bern

nachricht Neue statistische Verfahren zur Überprüfung von Arzneimittel-Generika
25.07.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops