Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heisse Nanopartikel für Krebstherapien

24.03.2014

Nanopartikel besitzen ein grosses Potenzial in der Medizin: für die Diagnostik, als Wirkstoffvehikel oder als Werkzeug, um Tumorzellen mittels Hitze den Garaus zu machen. ETH-Forschende haben nun Partikel entwickelt, die einfach herzustellen und vielfältig einsetzbar sind.

Schliesst man die Hand um eine Taschenlampe, scheint die Hand rot zu leuchten. Das liegt daran, dass langwellige rote Lichtstrahlen besser durch menschliches Gewebe dringen als kurzwelliges blaues Licht.

Diesen Umstand machen sich ETH-Forschende bei einer neuen Art von Nanopartikeln zunutze: Diese sogenannten plasmonischen Partikel absorbieren Licht im nahen Infrarot-Bereich und heizen sich dabei auf. So könnten sie beispielsweise Tumorgewebe durch Hitze abtöten.

Für solche therapeutisch eingesetzten Nanopartikel ist Gold ein beliebtes Material. Es ist gut verträglich und ruft in der Regel keine unerwünschten Reaktionen hervor. In der für Nanopartikel typischen Kugelform hat Gold jedoch nicht die nötigen Eigenschaften, um als plasmonischer Partikel zu funktionieren, der genug Licht im Infrarotbereich absorbiert, um sich aufzuheizen.

Dazu muss es in eine spezielle Form gebracht werden, zum Beispiel in Stäbchen- oder Schalenform. Dadurch nehmen die Goldatome eine Konfiguration ein, die Licht nahe des Infrarotbereichs absorbiert und Wärme erzeugt. Solche Nanostäbchen oder -schalen in ausreichender Menge herzustellen, ist aber aufwändig und teuer. 

Aggregate statt Stäbchen

Ein Forscherteam unter der Leitung von Sotiris Pratsinis, Professor für Partikeltechnologie am Institut für Verfahrenstechnik, hat nun einen Trick gefunden, plasmonische Goldteilchen in grosser Menge herzustellen. Sie nutzten ihr vorhandenes Know-how für plasmonische Partikel und stellten kugelförmige Goldpartikel her, welche die gewünschten nahe-Infrarot plasmonischen Eigenschaften besitzen: dazu liessen sie die Partikel aggregieren.

Zuvor wurde jedes einzelne Teilchen mit einer Siliziumdioxid-Schicht überzogen, die als Platzhalter zwischen den einzelnen Kugeln im Aggregat dienten. Durch den genau bestimmten Abstand zwischen mehreren Goldpartikeln bringen die Forschenden die Teilchen in eine Konfiguration, die Infrarotlicht absorbiert und Hitze erzeugt.

«Die Siliziumdioxid-Hülle hat noch einen weiteren Vorteil», erklärt Georgios Sotiriou, Erstautor der Studie, bis vor kurzem Postdoc bei Pratsinis und inzwischen Forscher an der Harvard Universität. «Sie verhindert, dass sich die Teilchen beim Erwärmen verformen.» Dies sei insbesondere bei Nanostäbchen ein Problem. Verlieren die Stäbchen beim Erhitzen mit Infrarotlicht ihre Form, verlieren sie die spezifisch gewünschten plasmonischen Eigenschaften und können nicht mehr genug Licht im nahen Infrarotbereich absorbieren.

Die Forschenden testeten die neuen Partikel bereits an Brustkrebszellen in der Petrischale und konnten nachweisen, dass sich die Nanoteilchen nach Bestrahlung mit Infrarotlicht genug erwärmten, um die Zellen abzutöten. Dagegen überlebten Zellen in Kontrollversuchen: mit Partikeln, aber ohne Bestrahlung, sowie mit Bestrahlung, aber ohne Nanoteilchen.

Kombination mit grossem Potenzial

Um die Partikel gezielt zu Krebsgewebe lenken zu können, mischten die Forschenden zusätzlich superparamagnetische Eisenoxid-Partikel unter die Goldteilchen. Dadurch lassen sich die Nanoaggregate durch Magnetfelder steuern und könnten so in einem Tumor angereichert werden. Ausserdem eröffnet sich damit die Möglichkeit, die Aggregate in tiefliegenden Gewebeschichten, wohin auch Infrarotlicht nicht mehr vordringt, durch Magnet-Hyperthermie aufzuheizen. Dabei wird Wärme erzeugt, indem ein Magnetfeld, dessen Plus- und Minuspole in schnellem Rhythmus abwechseln.

«Bis die Partikel im Menschen zum Einsatz kommen, sind noch viele Fragen zu klären», sagt Jean-Christophe Leroux, Professor für Drug Formulation and Delivery am Institut für Pharmazeutische Wissenschaften und ebenfalls an der Forschungsarbeit beteiligt. Zwar seien Gold, Siliziumoxid und Eisenoxid gut verträglich, dennoch müsse untersucht werden, was mit den Partikelaggregaten im Körper im Laufe der Zeit geschehe, ob sie sich beispielsweise in der Leber ansammelten oder zerfallen und ausgeschieden würden.

Die Eisenoxid-Gold-Nanopartikel können nicht nur Tumorzellen durch Hitze abtöten, sie könnten auch als Kontrastmittel für bildgebende Verfahren in der Diagnostik per Magnetresonanztomographie genutzt werden, was in einer Kollaboration mit dem Universitätsspital Zürich geprüft wird, oder sie könnten als Bestandteil von Wirkstoffvehikeln dienen. «Man könnte die Teilchen mit temperatursensitiven Wirkstoffträgern koppeln, die das gewünschte Medikament dann freisetzen, wenn eine bestimmte Temperatur überschritten wird», erklärt Sotiriou. Die Nanopartikel könnten über Magnetfelder an den gewünschten Ort im Körper, zum Beispiel zu einem erkrankten Organ, gelenkt und dort ein Medikament gezielt freisetzen. Dadurch liessen sich unerwünschte Nebenwirkungen auf den Rest des Körpers reduzieren oder sogar vermeiden.

Literaturhinweis:
Sotiriou GA, Starsich F, Dasargyri A, Wurnig MC, Krumeich F, Boss A, Leroux JC, Pratsinis SE: Photothermal Killing of Cancer Cells by the Controlled Plasmonic Coupling of Silica-Coated Au/Fe2O3 Nanoaggregates. Adv. Funct. Mater., January 13, 2014. DOI: 10.1002/adfm.201303416

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2014/03/heisse-nan...

Angelika Jacobs | ETH Zürich

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Sicher und gesund arbeiten mit Datenbrillen
13.01.2017 | Bundesanstalt für Arbeitsschutz und Arbeitsmedizin

nachricht Vorhersage entlastet das Gehirn
13.01.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltweit erste Solarstraße in Frankreich eingeweiht

16.01.2017 | Energie und Elektrotechnik

Proteinforschung: Der Computer als Mikroskop

16.01.2017 | Biowissenschaften Chemie

Vermeintlich junger Stern entpuppt sich als galaktischer Greis

16.01.2017 | Physik Astronomie