Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Getrennt marschieren, vereint schlagen

15.08.2011
MHH-Forscher zeigen mit Mikro-Injektionstechnik, wie Abwehrzellen des Immunsystems in den Lymphknoten gelangen / Veröffentlichung in „Nature Immunology“

Ständig patrouillieren die Wächter- und Abwehrzellen des Immunsystems durch fast alle Gewebe unseres Körpers. Für einen Standortwechsel werden die Immunzellen durch Lymphgefäße, die „Autobahnen“ des Immunsystems, aus den Geweben zurück in den Blutkreislauf transportiert.


Querschnitt eines Lymphknotens unter dem Mikroskop. Mit der Mikro-Injektionstechnik zeigten die Forscher, dass normale dendritische Zelle (grün gefärbt) in das Innere des Lymphknotens, den Paracortex, einwandern, während dendritische Zellen, denen die Wissenschaftler einen bestimmten Rezeptor entfernt hatten (CCR7, rot gefärbt), draußen bleiben müssen. Foto: MHH

Lymphknoten sind als zentrale Kontrollstationen in diese Lymphgefäß-„Autobahnen“ eingebaut, um den aus dem Gewebe kommenden Strom an Flüssigkeit und Zellen zu überwachen. Lange Zeit war dabei unklar, über welche Routen die verschiedenen Immunzellen in den Lymphknoten eintreten, und welche Signale dafür sorgen, dass sie „ihre Autobahn-Ausfahrt“ nicht verpassen. Forscher des Instituts für Immunologie der Medizinischen Hochschule Hannover (MHH) haben diese Fragen jetzt mit Hilfe einer von ihnen entwickelten Mikro-Injektionstechnik geklärt. Ihre Arbeit wurde am jetzt im Wissenschaftsjournal „Nature Immunology“ als Titelgeschichte veröffentlicht.

Mit der Mikro-Injektionstechnik ist es möglich, markierte Immunzellen direkt in die winzigen Lymphgefäße narkotisierter Versuchsmäuse zu injizieren. Die sogenannte Zwei-Photonen-Laser-Scanning-Mikroskopie erlaubte es anschließend, die leuchtenden Zellen auf ihren Wegen in den nächsten Lymphknoten „live“ zu beobachten. „Es war sehr spannend zu sehen, wie sich verschiedene Immunzellen in ihrem Wanderungsverhalten vollkommen unterscheiden“, sagt Assolina Braun, Doktorandin am Institut für Immunologie und Erstautorin der Studie. Während nämlich die sogenannten dendritischen Zellen die Zellschicht zwischen Lymphgefäß und Lymphknoten aus eigener Kraft frontal „durchbohren“ konnten, gelangten T-Helferzellen fast ausschließlich über einen „Hintereingang“ ins Innere des Lymphknoten. Kamen beide Zelltypen jedoch gemeinsam am Lymphknoten an, funktionierten die dendritischen Zellen wie Türöffner und ermöglichten auch den T-Helferzellen den direkten Weg in den Lymphknoten. „Diese gegenseitige Hilfe könnte sehr wichtig sein, um im Fall einer Entzündung möglichst effektiv dendritische Zellen und T-Helferzellen im zuständigen Lymphknoten zu versammeln“, vermutet Professor Dr. Reinhold Förster, Direktor des MHH-Instituts für Immunologie.

Auch wenn Mechanismen der Immunabwehr und -überwachung bei dieser Arbeit im Vordergrund standen, so kommen die Erkenntnisse auch anderen Gebieten der medizinischen Forschung zugute. So ist naheliegend, dass die direkte Mikro-Injektion von Zellen in Lymphgefäße die Wirksamkeit von sogenannten zellulären Vakzinen verbessern könnte, die derzeit als neue Behandlungsmethode von Krebserkrankungen untersucht werden. Ebenso ist es nun möglich, das Metastasierungsverhalten von Tumoren in die Lymphknoten gezielter zu untersuchen.

Weitere Informationen erhalten Sie bei Professor Dr. Reinhold Förster, Telefon (0511) 532-9721, foerster.reinhold@mh-hannover.de

Stefan Zorn | Medizinische Hochschule Hannover
Weitere Informationen:
http://www.mh-hannover.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs
13.12.2017 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Gefäßregeneration: Wie sich Wunden schließen
12.12.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften