Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher des Robert Koch-Instituts entwickeln Impfverfahren gegen Tumoren

23.03.2015

Impfen gegen schon bestehende Tumoren war bisher nicht erfolgreich - jetzt ist es einer Arbeitsgruppe am Robert-Koch-Institut Berlin gelungen, bestimmte Immunzellen so zu verändern, dass sie Tumorzellen eliminieren, wie es nach einer Impfung Viren im Körper geschieht: Das Team um Richard Kroczek zeigte im Tiermodell, dass sich Killer-T-Zellen im Körper effektiv vermehren und speziell aktivieren lassen, so dass sie Tumoren attackieren. Die Forscher nutzen dabei ganz normale Immunmechanismen, die bei Mäusen und Menschen gleichartig funktionieren. Der am Tier gezeigte Mechanismus ist daher auf Menschen übertragbar: Die Impfung gegen Krebserkrankungen scheint jetzt in greifbarer Nähe.

Dass das Abwehrsystem des Körpers einzelne Krebszellen zerstören kann, ist schon seit langem bekannt. Forscher haben daher seit Jahren versucht, die natürlichen Waffen des Immunsystems gezielt gegen entartete Zellen zu nutzen. Einen Durchbruch gab es bisher jedoch nicht – ist einmal ein Tumor entstanden, scheint die körpereigene Abwehr zu kapitulieren.

Dabei kann das Immunsystem des Menschen sehr aktiv eingedrungene Erreger wie Viren und Bakterien bekämpfen. Dazu wendet es zwei Strategien an: Zum einen werden spezielle Eiweiße, sogenannte Antikörper, gebildet, welche sich an die fremden Erreger haften und diese dadurch unschädlich machen. Nach diesem Prinzip funktionieren die gängigen Impfstoffe – sie regen die Bildung neutralisierender Antikörper an und schützen so vor Infektionen. Doch diese Antikörper können kein Krebsgewebe angreifen.

Die zweite Abwehrschiene des Immunsystems bilden die Killer-T-Zellen. Killer-T-Zellen sind in der Lage, bereits von Erregern befallene Körperzellen zu zerstören und so die Ausbreitung des Erregers aufzuhalten. Dazu werden sie zuvor von anderen, eigens spezialisierten Zellen des Immunsystems auf den Eindringling programmiert. Danach erkennen die Killer-T-Zellen den Erreger und attackieren ihn, wo immer sie ihn antreffen. Auch dieses Prinzip des Immunsystems ist erfolgreich bei der Abwehr von Infektionen, und auf den Killer-T-Zellen ruhen einige Hoffnungen im Kampf gegen Krebs. Allerdings ist es bisher nicht gelungen, Impfverfahren zu entwickeln, die eine Neubildung solcher Killer-T-Zellen und deren Programmierung gegen Tumorgewebe im Körper wirksam anregen.

Genau das ist jetzt einer Forschergruppe am Robert Koch-Institut in Berlin gelungen. Die Arbeitsgruppe um Richard Kroczek hat ein Verfahren entwickelt, das sehr effektiv die Vermehrung und Aktivierung von Killer-T-Zellen im Körper auslöst – und zwar erstmals so, dass sie auch Tumore wirksam angreifen.

Zu Beginn dieser Arbeiten war bereits bekannt, dass spezielle Zellen im Körper für das Scharfmachen der Killer-T-Zellen verantwortlich sind: Es sind die sogenannten dendritischen Zellen. Das sind Elemente des Immunsystems, die Bestandteile von eingedrungenen Erregern aufnehmen, den Killer-T-Zellen als Ziel präsentieren und diese so gegen den Erreger scharf machen.

Die Gruppe um Prof. Richard Kroczek hat zunächst einen Weg gefunden, wie Erregerbestandteile in dendritische Zellen von Mäusen direkt und spezifisch eingeschleust werden können, was bisher nicht möglich war. So ist es erstmals gelungen, das Scharfschalten der Killer-T-Zellen präzise zu steuern.

Dieses Einschleusen geschieht über eine bestimmte Andockstelle an der Oberfläche der dendritischen Zellen. An diese Stelle docken kleine Moleküle aus dem Blut an, sogenannte Chemokine. Die Forscher nutzen ein solches Chemokin als Transportmittel für ihre Impfstoffe. Dockt das Chemokin mit seiner fremden Fracht an der Oberfläche der dendritischen Zelle an, wird das Impfpräparat in die dendritischen Zellen aufgenommen und den Killer-T-Zellen präsentiert. Die Killer-T-Zellen werden auf diese Weise speziell auf die Erreger-Bestandteile programmiert: Sie erkennen vom Eindringling befallene Körperzellen und eliminieren diese.

Im nächsten Schritt hat die Arbeitsgruppe von Richard Kroczek dieses Impfverfahren so modifiziert, dass die Killer-T-Zellen danach auch Tumore attackieren. Dabei wurden die Transport-Chemokine statt mit Teilen bakterieller Erreger mit Informationen aus den Tumorzellen beladen. Die Folge: Killer-T-Zellen greifen erstmals auch Tumor-Gewebe an, das sie vorher nicht erkennen konnten. Dieser Effekt konnte sehr erfolgreich an Mäusen mit Tumoren gezeigt werden.

Die Methode der Arbeitsgruppe wurde vor kurzem im internationalen „Journal of Immunology“ veröffentlicht – doch die Forscher am Robert-Koch Institut sind inzwischen viel weiter: Sie können die Killer-T-Zellen mit Hilfe bestimmter Wachstumsfaktoren im lebenden Körper zur Vermehrung anregen, so dass viel mehr Killer-T-Zellen entstehen als in älteren Versuchen. „Konnten wir früher 5 Prozent aller Killer-T-Zellen gegen einen Tumor programmieren, so sind es jetzt zehn Mal mehr, bis zu 50 Prozent aller Killer-T-Zellen im Körper“, sagt Richard Kroczek, Leiter der Forschungsgruppe.

Da die spezielle Andockstelle an der dendritischen Zelle, der XCR1-Rezeptor, auch beim Menschen ausschließlich auf den dendritischen Zellen vorkommt, ist das neue Impfverfahren auf das menschliche Immunsystem übertragbar.
„Im Tiermodell war das Verfahren wirklich sehr erfolgreich – es ist zum ersten Mal gelungen, das Immunsystem in diesem Ausmaß gegen Tumore zu aktivieren“ meint Richard Kroczek. „Wir hoffen sehr, dass die weiteren Studien zeigen werden, ob die Methode beim Menschen im Kampf gegen den Krebs sicher und erfolgreich eingesetzt werden kann.“

Die Wilhelm Sander-Stiftung hat dieses Forschungsprojekt mit rund 390.000.- Euro unterstützt. Stiftungszweck ist die Förderung der medizinischen Forschung, insbesondere von Projekten im Rahmen der Krebsbekämpfung. Seit Gründung der Stiftung wurden insgesamt über 190 Mio. Euro für die Forschungsförderung in Deutschland und der Schweiz bewilligt. Die Stiftung geht aus dem Nachlass des gleichnamigen Unternehmers hervor, der 1973 verstorben ist.

Kontakt:

Prof. Dr. med. Richard Kroczek
Robert-Koch-Institut
Postfach: 650261
13302 Berlin

Mail: kroczek@rki.de
Tel. +49 (30) 18754-2450

Literatur: Hartung et al., Journal of Immunology 194 (2015) 1069

Wilhelm Sander-Stiftung
Goethestraße 74
80336 München
Tel: +49 (89) 544 187 0
Fax: +49 (89) 544 187 20
Web: www.sanst.de

Weitere Informationen:

http://www.rki.de/DE/Content/Forsch/Projektgruppen/Projektgruppe_1/P1_node.html
http://www.rki.de
http://www.sanst.de

Bernhard Knappe | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz gegen Gastritis
10.08.2017 | Medizinische Hochschule Hannover

nachricht Wenn Schimmelpilze das Auge zerstören
10.08.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten