Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erste Hilfe im Gehirn: Wenn die Sprache plötzlich ausfällt

06.07.2017

Nach einem Schlaganfall treten bei den Betroffenen häufig Sprachprobleme auf, denn wichtige Areale ihres Sprachnetzwerkes im Gehirn wurden verletzt. In manchen Fällen können bestimmte sprachliche Fähigkeiten wiedererlangt werden, in anderen bleiben sie jedoch für immer verloren. Wissenschaftler des Max-Planck-Instituts für Kognitions- und Neurowissenschaften (MPI CBS) in Leipzig haben nun eine mögliche Erklärung gefunden: Die Verletzung einiger Hirnbereiche kann gut kompensiert werden, die anderer Regionen hingegen nicht. Diese Erkenntnisse könnten nicht nur für die Therapie eines Schlaganfalls relevant sein, sondern bestätigen auch den hierarchischen Aufbau der Sprache.

Miteinander zu sprechen ist eine komplexe Angelegenheit. Während wir uns unterhalten, müssen wir aus einer komplexen Flut an Lauten einzelne Wörter und Formulierungen erkennen. Gleichzeitig müssen wir uns eine Antwort überlegen und entsprechend die Bewegung von Lippen und Zunge planen, um diese auch hervorzubringen.


Ob ein ausgefallenes Hirnareal unseres Sprachnetzwerkes durch ein anderes kompensiert werden kann, hängt davon ab, wie grundlegend der gestörte Prozess ist - je basaler, desto unwahrscheinlicher.

MPI CBS

Jeder einzelne Schritt, von der Analyse der Worte bis zur Produktion der Sprache, benötigt eine Reihe an Hirnarealen, die zusammenarbeiten. Bisher war jedoch kaum bekannt, wie diese Zusammenarbeit aussieht – oder was passiert, wenn eines der zentralen Areale verletzt ist.

Wissenschaftler des Max-Planck-Instituts für Kognitions- und Neurowissenschaften (MPI CBS) in Leipzig haben nun herausgefunden, was passiert, wenn zwei entscheidende Hirnareale für unser Sprachverständnis plötzlich inaktiv sind: Sie haben beobachtet, dass der Ausfall mancher Hirnbereiche des Sprachnetzwerkes kompensiert werden kann, der anderer Bereiche hingegen nicht.

„Ist das Areal beeinträchtigt, in dem wir die Bedeutung der Sprache verarbeiten, der sogenannte Gyrus angularis, kann unser Gehirn das gut kompensieren. Dann springt das benachbarte Areal, der Gyrus supramarginalis, ein und verstärkt seine Aktivität. Dies ist erstaunlich, da dieses Areal eigentlich dafür zuständig ist, die rhythmische Struktur der Wörter zu verarbeiten“, erklärt Studienleiterin Gesa Hartwigsen. Durch diesen Dienst könne die Bedeutung von Wörtern beinahe genauso schnell erkannt werden als wenn das eigentlich zuständige Areal diese Aufgabe erfülle.

„Ist jedoch das Areal zur Verarbeitung der rhythmischen Struktur der Wörter selbst gestört, kann sein Ausfall kaum kompensiert werden und seine Aufgaben werden von keinem anderen Teil des Sprachnetzwerkes übernommen.“ Für uns wird es dann deutlich schwerer, die rhythmische Struktur eines Wortes zu verarbeiten, also seine Silben zu analysieren.

Die Wissenschaftler vermuten, dass die Fähigkeit, einen gestörten Prozess durch einen anderen Hirnbereich zu kompensieren, davon abhängt, auf welcher Hierarchieebene die Sprache gestört wird: Handelt es sich um einen derart grundlegenden Prozess wie die Verarbeitung der rhythmischen Struktur eines Wortes, kann er nicht einfach von anderen Bereichen übernommen werden. Komplexere Verarbeitungsschritte wie die Bedeutungsanalyse können jedoch von einfacheren Prozessen unterstützt werden, da sie auf diesen aufbauen. Allgemeinere Prozesse können dann unterstützend herangezogen werden um so die Verarbeitung aufrechtzuerhalten.

Aus diesem Erkenntnissen schließen Hartwigsen und ihr Team zweierlei: „Wir können nun zum einen abschätzen, welche Schädigungen sich etwa nach einem Schlaganfall am ehesten kompensieren lassen und worauf es sich lohnen könnte, in Zukunft verstärkt die Therapie auszurichten, beispielsweise auf das Netzwerk, das dann einspringt“, so die Leiterin der Forschungsgruppe Modulation von Sprachnetzwerken. Zum anderen konnten sie dadurch die Hypothese vom hierarchischen Aufbau der Sprache bestätigen. Demnach bauen während der Verarbeitung von Sprache komplexe Schritte auf einfacheren auf. Bevor wir also die Bedeutung eines Wortes analysieren, verarbeiten wir also zunächst dessen Laute.

Untersucht haben die Neurowissenschaftler diese Zusammenhänge mithilfe der sogenannten transkraniellen Magnetstimulation, kurz TMS. Durch diese Methode kann die Aktivität einzelner Hirnregion für kurze Zeit gestört und so die Reaktion des Gehirns auf diese Beeinträchtigung untersucht werden. Die TMS nutzt dazu Magnetfelder, um mittels elektrischer Stimulation durch den Schädel einzelne Hirnbereiche gezielt zu hemmen oder zu erregen. In diesem Falle hemmte das Team um Hartwigsen bei 17 gesunden Studienteilnehmern für kurze Zeit jeweils das Sprachareal für die Analyse der Wortbedeutung oder der rhythmischen Struktur. Daraufhin verglichen sie die Leistungen der Teilnehmer in sprachlichen Aufgaben.

Originalpublikation:

Gesa Hartwigsen, Danilo Bzdok, Maren Klein, Max Wawrzyniak, Anika Stockert, Katrin Wrede, Joseph Classen, and Dorothee Saur (2017) Rapid short-term reorganization in the language network. eLife. doi: 10.7554/eLife.25964

(Die vollständige Pressemitteilung finden Sie auch hier http://www.cbs.mpg.de/Erste-Hilfe-im-Gehirn-Wenn-die-Sprache-ploetzlich-ausfaell...)

Verena Müller | Max-Planck-Institut für Kognitions- und Neurowissenschaften
Weitere Informationen:
http://www.cbs.mpg.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik