Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das große Fressen: Mainzer Wissenschaftler identifizieren neuen Faktor der Autophagie

04.02.2015

Neurodegenerative Erkrankungen wie die Alzheimer-Krankheit sind vielfach durch Proteinablagerungen im Gehirn gekennzeichnet. Diese bestehen aus fehlerhaften, unlöslichen Proteinen, die weder ihre Funktion erfüllen noch von der Zelle abgebaut werden können.

 Der Arbeitsgruppe um Univ.-Prof. Dr. Christian Behl vom Institut für Pathobiochemie der Universitätsmedizin Mainz ist es jetzt gelungen, mit dem sogenannten RAB3GAP-Komplex einen neuen Faktor zu identifizieren, der den Abbau von Proteinen beeinflusst. Die Wissenschaftler konnten ihn der Autophagie zuordnen, einem Prozess, in dem die Zelle eigene Bestandteile in ihre Komponenten zerlegt, um sie unschädlich zu machen und wiederzuverwerten.


„Der nur 1 mm große, durchsichtige Fadenwurm Caenorhabditis elegans zeichnet sich unter anderem durch eine kurze Generationszeit und genau festgelegte Zellzahl aus und dient als Modellorganismus

Dr. Andreas Kern, Institut für Pathobiochemie der Universitätsmedizin Mainz

Aus den Erkenntnissen ergeben sich neue Ansatzpunkte, um therapeutische und präventive Konzepte gegen neurodegenerative Erkrankungen entwickeln zu können. Ihre Forschungsergebnisse hat die Arbeitsgruppe jetzt in der Fachzeitschrift „Autophagy“ veröffentlicht.

Das Team um Professor Behl und Dr. Andreas Kern konnte zeigen, dass der RAB3GAP-Komplex den Abbauprozess von Proteinen entscheidend beeinflusst, indem er einen bedeutenden Faktor des zellulären Autophagie-Netzwerks darstellt. Autophagie (abgeleitet von den griechischen Begriffen für „selbst“ und „fressen“) bezeichnet einen Prozess, bei dem die Zelle eigene Bestandteile „verdaut“ – dies können überzählige oder geschädigte Organellen wie Mitochondrien sein, eingedrungene Erreger (Viren, Bakterien) oder zytoplasmatische Makromoleküle.

Die Autophagie dient zum einen dem „Recycling“ von Zellbausteinen und dem Energiegewinn, wird aber auch gezielt in Stresssituationen aktiviert. „Der kontrollierte Proteinabbau durch die Autophagie ist eine zentrale Säule der Proteinhomöostase, des komplexen Zusammenspiels von Synthese, Faltung und Abbau von Proteinen. Indem wir neue Faktoren dieses Prozesses identifiziert haben, konnten wir unser Verständnis für altersabhängige Störungen erweitern“, stellt Professor Behl fest.

Konkret fanden die Pathobiochemiker heraus, dass der RAB3GAP-Komplex die Bildung autophagischer Vesikel unterstützt. Dabei handelt es sich um Bläschen mit einer Lipid (Fett)-Hülle, die die abzubauenden Substrate in ihr Inneres einschließen. Die autophagischen Vesikel verschmelzen dann mit Lysosomen, einfachen Zellorganellen, die Verdauungsenzyme enthalten und die Substrate in ihre Bestandteile zerlegen.

„Damit sich autophagische Vesikel bilden können, braucht es Lipidmembranen, deren Verfügbarkeit die Zelle gewährleisten muss. Unsere Entdeckung legt nahe, dass der RAB3GAP-Komplex Lipide rekrutiert, die für den Abbau von Proteinen mittels Autophagie benötigt werden“, sagt Dr. Andreas Kern vom Institut für Pathobiochemie, der die Experimente federführend leitete.

Bislang war nur bekannt, dass der RAB3GAP-Komplex für die Regulation der RAB GTPase RAB3 wichtig ist und den Vesikeltransport an den Kontaktstellen zwischen den Nervenzellen, den Synapsen, beeinflusst. Die nun aufgezeigte duale Funktionalität des Komplexes ist besonders im Hinblick auf Erkrankungen des Nervensystems von besonderer Bedeutung.

Die Entdeckung der Mainzer Wissenschaftler basiert auf Experimenten mit dem Fadenwurm C. elegans, der als vereinfachtes Modell u.a. für das menschliche Nervensystem herangezogen wird. In C. elegans haben die Biochemiker circa 2.500 Gene mittels spezieller molekularbiologischer Methoden gezielt einzeln ausgeschaltet und die Effekte auf die Proteinaggregation analysiert. Den Wissenschaftlern gelang es so, zahlreiche Gene zu identifizieren, deren „Abschalten“ zu einer verstärkten Proteinablagerung führte. Die genaue Analyse der Funktion erfolgte dann in humanen Kulturzellen.

Die Arbeitsgruppe von Professor Behl konnte zudem zeigen, dass die positive Modulation der Autophagie durch den RAB3GAP-Komplex einem bereits bekannten negativen Autophagie-Regulator entgegenwirkt. „Unsere Hypothese ist, dass die Balance der beiden entgegengesetzt wirkenden Moleküle die autophagische Gesamtaktivität von Zellen bestimmt. Wir glauben, dass wir nicht nur dem Verständnis des Prozesses der Autophagie näher gekommen sind. Vielmehr sehen wir die Chance, mit seiner gezielten Modulation neue Ansatzpunkte für die Therapie und die Prävention neurodegenerativer Erkrankungen entwickeln zu können“, so Professor Behl.

An dem langjährigen Forschungsprojekt waren neben den Mainzer Wissenschaftlern auch Biochemiker der Goethe-Universität Frankfurt beteiligt. Es wurde auf breiter Ebene von der Alzheimer Forschung Initiative e.V., der Deutschen Forschungsgemeinschaft – unter anderem im Rahmen des Sonderforschungsbereichs „Molekulare und zelluläre Mechanismen neuronaler Homöostase“ (SFB 1080) –, dem Europäischen Forschungsrat und mehreren Stiftungen unterstützt.

Originalpublikation:
Spang N, Feldmann A, Huesmann H, Bekbulat F, Schmitt V, Hiebel C, Koziollek-Drechsler I, Clement AM, Moosmann B, Jung J, Behrends C, Dikic I, Kern A, Behl C.RAB3GAP1 and RAB3GAP2 modulate basal and rapamycin-induced autophagy. Autophagy. 2014; 10(12):2297-309. doi: 10.4161/15548627.2014.994359.
http://www.tandfonline.com/doi/full/10.4161/15548627.2014.994359#tabModule

Kontakt
Univ.-Prof. Dr. rer. nat. Christian Behl
Direktor des Instituts für Pathobiochemie
Universitätsmedizin der Johannes Gutenberg-Universität Mainz
Duesbergweg 6, 55099 Mainz, Telefon 06131 39 25890, Fax 06131 39 25792
E-Mail: cbehl@uni-mainz.de
http://www.unimedizin-mainz.de/pathobiochemie

Dr. Christine Ziegler
Institut für Pathobiochemie
Universitätsmedizin der Johannes Gutenberg-Universität Mainz
Telefon 06131 39 24552, E-Mail: christine.ziegler@uni-mainz.de

Pressekontakt
Oliver Kreft, Stabsstelle Kommunikation und Presse Universitätsmedizin Mainz,
Telefon 06131 17-7424, Fax 06131 17-3496, E-Mail: pr@unimedizin-mainz.de

Über die Universitätsmedizin der Johannes Gutenberg-Universität Mainz
Die Universitätsmedizin der Johannes Gutenberg-Universität Mainz ist die einzige medizinische Einrichtung der Supramaximalversorgung in Rheinland-Pfalz und ein international anerkannter Wissenschaftsstandort. Sie umfasst mehr als 60 Kliniken, Institute und Abteilungen, die fächerübergreifend zusammenarbeiten. Hochspezialisierte Patientenversorgung, Forschung und Lehre bilden in der Universitätsmedizin Mainz eine untrennbare Einheit. Rund 3.300 Studierende der Medizin und Zahnmedizin werden in Mainz ausgebildet. Mit rund 7.500 Mitarbeiterinnen und Mitarbeitern ist die Universitätsmedizin zudem einer der größten Arbeitgeber der Region und ein wichtiger Wachstums- und Innovationsmotor.

Weitere Informationen im Internet unter www.unimedizin-mainz.de

Oliver Kreft | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Entdeckung Fressen Modulation Pathobiochemie Vesikel Zelle

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Forscher entschlüsseln einen Mechanismus bei schweren Hautinfektionen
24.01.2017 | Eberhard Karls Universität Tübingen

nachricht Tollwutviren zeigen Verschaltungen im gläsernen Gehirn
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie