Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das große Fressen: Mainzer Wissenschaftler identifizieren neuen Faktor der Autophagie

04.02.2015

Neurodegenerative Erkrankungen wie die Alzheimer-Krankheit sind vielfach durch Proteinablagerungen im Gehirn gekennzeichnet. Diese bestehen aus fehlerhaften, unlöslichen Proteinen, die weder ihre Funktion erfüllen noch von der Zelle abgebaut werden können.

 Der Arbeitsgruppe um Univ.-Prof. Dr. Christian Behl vom Institut für Pathobiochemie der Universitätsmedizin Mainz ist es jetzt gelungen, mit dem sogenannten RAB3GAP-Komplex einen neuen Faktor zu identifizieren, der den Abbau von Proteinen beeinflusst. Die Wissenschaftler konnten ihn der Autophagie zuordnen, einem Prozess, in dem die Zelle eigene Bestandteile in ihre Komponenten zerlegt, um sie unschädlich zu machen und wiederzuverwerten.


„Der nur 1 mm große, durchsichtige Fadenwurm Caenorhabditis elegans zeichnet sich unter anderem durch eine kurze Generationszeit und genau festgelegte Zellzahl aus und dient als Modellorganismus

Dr. Andreas Kern, Institut für Pathobiochemie der Universitätsmedizin Mainz

Aus den Erkenntnissen ergeben sich neue Ansatzpunkte, um therapeutische und präventive Konzepte gegen neurodegenerative Erkrankungen entwickeln zu können. Ihre Forschungsergebnisse hat die Arbeitsgruppe jetzt in der Fachzeitschrift „Autophagy“ veröffentlicht.

Das Team um Professor Behl und Dr. Andreas Kern konnte zeigen, dass der RAB3GAP-Komplex den Abbauprozess von Proteinen entscheidend beeinflusst, indem er einen bedeutenden Faktor des zellulären Autophagie-Netzwerks darstellt. Autophagie (abgeleitet von den griechischen Begriffen für „selbst“ und „fressen“) bezeichnet einen Prozess, bei dem die Zelle eigene Bestandteile „verdaut“ – dies können überzählige oder geschädigte Organellen wie Mitochondrien sein, eingedrungene Erreger (Viren, Bakterien) oder zytoplasmatische Makromoleküle.

Die Autophagie dient zum einen dem „Recycling“ von Zellbausteinen und dem Energiegewinn, wird aber auch gezielt in Stresssituationen aktiviert. „Der kontrollierte Proteinabbau durch die Autophagie ist eine zentrale Säule der Proteinhomöostase, des komplexen Zusammenspiels von Synthese, Faltung und Abbau von Proteinen. Indem wir neue Faktoren dieses Prozesses identifiziert haben, konnten wir unser Verständnis für altersabhängige Störungen erweitern“, stellt Professor Behl fest.

Konkret fanden die Pathobiochemiker heraus, dass der RAB3GAP-Komplex die Bildung autophagischer Vesikel unterstützt. Dabei handelt es sich um Bläschen mit einer Lipid (Fett)-Hülle, die die abzubauenden Substrate in ihr Inneres einschließen. Die autophagischen Vesikel verschmelzen dann mit Lysosomen, einfachen Zellorganellen, die Verdauungsenzyme enthalten und die Substrate in ihre Bestandteile zerlegen.

„Damit sich autophagische Vesikel bilden können, braucht es Lipidmembranen, deren Verfügbarkeit die Zelle gewährleisten muss. Unsere Entdeckung legt nahe, dass der RAB3GAP-Komplex Lipide rekrutiert, die für den Abbau von Proteinen mittels Autophagie benötigt werden“, sagt Dr. Andreas Kern vom Institut für Pathobiochemie, der die Experimente federführend leitete.

Bislang war nur bekannt, dass der RAB3GAP-Komplex für die Regulation der RAB GTPase RAB3 wichtig ist und den Vesikeltransport an den Kontaktstellen zwischen den Nervenzellen, den Synapsen, beeinflusst. Die nun aufgezeigte duale Funktionalität des Komplexes ist besonders im Hinblick auf Erkrankungen des Nervensystems von besonderer Bedeutung.

Die Entdeckung der Mainzer Wissenschaftler basiert auf Experimenten mit dem Fadenwurm C. elegans, der als vereinfachtes Modell u.a. für das menschliche Nervensystem herangezogen wird. In C. elegans haben die Biochemiker circa 2.500 Gene mittels spezieller molekularbiologischer Methoden gezielt einzeln ausgeschaltet und die Effekte auf die Proteinaggregation analysiert. Den Wissenschaftlern gelang es so, zahlreiche Gene zu identifizieren, deren „Abschalten“ zu einer verstärkten Proteinablagerung führte. Die genaue Analyse der Funktion erfolgte dann in humanen Kulturzellen.

Die Arbeitsgruppe von Professor Behl konnte zudem zeigen, dass die positive Modulation der Autophagie durch den RAB3GAP-Komplex einem bereits bekannten negativen Autophagie-Regulator entgegenwirkt. „Unsere Hypothese ist, dass die Balance der beiden entgegengesetzt wirkenden Moleküle die autophagische Gesamtaktivität von Zellen bestimmt. Wir glauben, dass wir nicht nur dem Verständnis des Prozesses der Autophagie näher gekommen sind. Vielmehr sehen wir die Chance, mit seiner gezielten Modulation neue Ansatzpunkte für die Therapie und die Prävention neurodegenerativer Erkrankungen entwickeln zu können“, so Professor Behl.

An dem langjährigen Forschungsprojekt waren neben den Mainzer Wissenschaftlern auch Biochemiker der Goethe-Universität Frankfurt beteiligt. Es wurde auf breiter Ebene von der Alzheimer Forschung Initiative e.V., der Deutschen Forschungsgemeinschaft – unter anderem im Rahmen des Sonderforschungsbereichs „Molekulare und zelluläre Mechanismen neuronaler Homöostase“ (SFB 1080) –, dem Europäischen Forschungsrat und mehreren Stiftungen unterstützt.

Originalpublikation:
Spang N, Feldmann A, Huesmann H, Bekbulat F, Schmitt V, Hiebel C, Koziollek-Drechsler I, Clement AM, Moosmann B, Jung J, Behrends C, Dikic I, Kern A, Behl C.RAB3GAP1 and RAB3GAP2 modulate basal and rapamycin-induced autophagy. Autophagy. 2014; 10(12):2297-309. doi: 10.4161/15548627.2014.994359.
http://www.tandfonline.com/doi/full/10.4161/15548627.2014.994359#tabModule

Kontakt
Univ.-Prof. Dr. rer. nat. Christian Behl
Direktor des Instituts für Pathobiochemie
Universitätsmedizin der Johannes Gutenberg-Universität Mainz
Duesbergweg 6, 55099 Mainz, Telefon 06131 39 25890, Fax 06131 39 25792
E-Mail: cbehl@uni-mainz.de
http://www.unimedizin-mainz.de/pathobiochemie

Dr. Christine Ziegler
Institut für Pathobiochemie
Universitätsmedizin der Johannes Gutenberg-Universität Mainz
Telefon 06131 39 24552, E-Mail: christine.ziegler@uni-mainz.de

Pressekontakt
Oliver Kreft, Stabsstelle Kommunikation und Presse Universitätsmedizin Mainz,
Telefon 06131 17-7424, Fax 06131 17-3496, E-Mail: pr@unimedizin-mainz.de

Über die Universitätsmedizin der Johannes Gutenberg-Universität Mainz
Die Universitätsmedizin der Johannes Gutenberg-Universität Mainz ist die einzige medizinische Einrichtung der Supramaximalversorgung in Rheinland-Pfalz und ein international anerkannter Wissenschaftsstandort. Sie umfasst mehr als 60 Kliniken, Institute und Abteilungen, die fächerübergreifend zusammenarbeiten. Hochspezialisierte Patientenversorgung, Forschung und Lehre bilden in der Universitätsmedizin Mainz eine untrennbare Einheit. Rund 3.300 Studierende der Medizin und Zahnmedizin werden in Mainz ausgebildet. Mit rund 7.500 Mitarbeiterinnen und Mitarbeitern ist die Universitätsmedizin zudem einer der größten Arbeitgeber der Region und ein wichtiger Wachstums- und Innovationsmotor.

Weitere Informationen im Internet unter www.unimedizin-mainz.de

Oliver Kreft | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Entdeckung Fressen Modulation Pathobiochemie Vesikel Zelle

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Titandioxid-Nanopartikel können Darmentzündungen verstärken
19.07.2017 | Universität Zürich

nachricht Künftige Therapie gegen Frühgeburten?
19.07.2017 | Universitätsspital Bern

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie