Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Radiowellen machen Nanoröhrchen zu Hitzebomben im Tumor

07.11.2007
Krebszellen werden von innen heraus zerstört - Erste Tests erfolgreich

Krebszellen sollen in Zukunft von innen zerstört werden, wenn es nach den Vorstellungen der Wissenschaftler geht. Einem Forscherteam um Steven Curley vom MD Anderson Cancer Center an der University of Texas in Houston ist es gelungen mit Hilfe von Kohlenstoff-Nanoröhrchen Krebszellen gezielt zu zerstören.

Mit Radiofrequenzwellen erhitzten sich die Nanoröhrchen so stark, dass sie die Krebszellen vernichteten. Der Versuch an Lebertumorzellen von Hasen ist erfolgreich gelungen, berichtet das Wissenschaftsmagazin Nature in seiner Online-Ausgabe. In Zellkulturen gelang der Versuch bereits vorher. Nun war es das erste Mal, dass es in Tumoren von lebenden Tieren getestet wurde.

In ersten Versuchen erwiesen sich die Kohlenstoff-Nanoröhrchen als zuverlässig, da sie auf Infrarot-Bestrahlung reagierten. Im menschlichen Gewebe verursacht die Infrarot-Bestrahlung keine Schäden. Der bisher größte Nachteil dieser Behandlung war, dass die Infrarot-Bestrahlung nur etwa vier Zentimenter tief ins Gewebe eindringt. Dadurch konnten tieferliegende Tumore so nicht bestrahlt und behandelt werden. "Das ist bei den Radiowellen anders", erklärt Curley. Sie können den menschlichen Körper problemlos passieren. Die wissenschaftliche Arbeit der Forscher wurde vom inzwischen verstorbenen Nobelpreisträger Richard Smalley begonnen.

Die Forscher injizierten eine Lösung von Kohlenstoff-Nanoröhrchen in den Lebertumor des Hasen. Und bestrahlten die Stelle anschließend für zwei Minuten. Die Bestrahlung tötete die Krebszellen mit den Nanoröhrchen und richtete an den nebenliegenden gesunden Zellen nur sehr kleine Schäden hervor. "Die Arbeit ist verblüffend", meint der Wissenschaftler Hongjie Dai von der Stanford Universität in Palo Alto. Dai arbeitet mit Infrarot-Bestrahlungen und Nanoröhrchen in Mäusen. "Wenn die nun gefundene Methode effektiv ist, wäre sie besser als jene mit dem Infrarot-Licht", so der Forscher. Ein Nachteil sei allerdings, dass sich die Nanoröhrchen schon nach kurzer Bestrahlung durch die Radiofrequenzwellen sehr heiß werden. In Versuchen in wässriger Lösung erreichten sie schon nach 25 Sekunden Bestrahlung eine Temperatur von 45 Grad Celsius.

In drei bis vier Jahren strebt Curley klinische Tests des Systems an. "Ein Teil der Herausforderung ist es, die zwei bis drei Millimeter "Zerstörungszone" um die Nanoröhrchen zu verringern. Eine weitere Chance sieht der Forscher darin, Nanopartikel zu entwickeln, die die kanzerogenen Zellen selbst finden, ohne sie zuerst in den Tumor zu injizieren. Dazu müssten Zielmoleküle an der Außenseite der Röhrchen angebracht sein, die die kanzerogenen Zellen selbst finden, ehe die Bestrahlung erfolgt. "Das würde bedeuten, dass die Nanopartikel die Krebszellen selektiv infiltrieren, ehe die Radiostrahlen abgegeben werden", so Curly. Sein Team arbeite daran.

Weltweit forschen Wissenschaftler fieberhaft daran, eine Methode der Strahlentherapie zu finden, die Krebszellen gezielt zerstört und die anderen, gesunden Zellen verschont. Ein Weg könnte sein, ein Material zu finden, das auf die Frequenz der Bestrahlung reagiert, den Rest des Körpers allerdings unbeschadet lässt.

Wolfgang Weitlaner | pressetext.austria
Weitere Informationen:
http://www.mdanderson.org

Weitere Berichte zu: Bestrahlung Infrarot-Bestrahlung Krebszellen Nanoröhrchen

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics