Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum kranke Nieren plötzlich Eiweiß verlieren

13.09.2006
RUB-Forscher entdecken molekularen Mechanismus
PNAS: Ansatzpunkt für Medikamente

Warum bei Erkrankungen wie Diabetes und Bluthochdruck Nierenschäden mit Eiweißverlust entstehen können, war bislang ungeklärt. Neue Erkenntnisse über den molekularen Aufbau und die Regulation der kleinsten Filtereinheiten der Niere geben darüber jetzt Aufschluss und lassen auf die Entwicklung neuer Medikamente hoffen, die Patienten künftig die Dialyse ersparen könnten. Die entscheidenden Funde gelangen dem Forscherteam um Dr. Lorenz Sellin und Dr. Ivo Quack von der Nephrologie am Marienhospital Herne, Klinikum der Ruhr-Universität, in Zusammenarbeit mit der Albert-Ludwigs-Universität Freiburg und der Medizinischen und Molekularen Virologie der RUB im Labor von Prof. Dr. Lars Christian Rump. Ihre Ergebnisse sind in der aktuellen Ausgabe der Proceedings of the National Academy of Sciences of the United States of America (PNAS) veröffentlicht.

Aufgaben der Niere

Die Niere erfüllt im Wesentlichen drei Aufgaben: 1. Giftstoffe ausscheiden, 2. Blutsalze ausgeglichen halten und 3. den Flüssigkeitshaushalt anpassen, d.h. bei Hitze Wasser sparen, bei Überfüllung Wasser abgeben. Hierfür hat jede Niere ca. eine Millionen kleine Filtrationseinheiten (Nierenkörperchen), durch die pro Tag insgesamt 180 Liter Primärharn (entspricht einer Badewannenfüllung) abgepresst werden. Damit dabei nicht die vom Körper produzierten, kostbaren Eiweiße verloren gehen, besitzen die Nierenkörperchen sehr feine Filter - die glomerulären Schlitzmembranen. Durch diese Membran werden nur kleinste Eiweiße in geringem Ausmaß in den Primärharn abgepresst. Durch die molekularbiologische Erforschung von vererbten Nierenerkrankungen hat man in den letzten Jahren einige Bausteine dieses Filters erstmals kennen gelernt. Die Bedeutung dieser Bausteine für viel häufigere Nierenkrankheiten ohne genetische Ursache wie die diabetische Nierenerkrankung und Blutdruckschäden der Niere war bisher unklar.

... mehr zu:
»Nephrin »Niere

Neues Konzept der Dichtigkeits-Regulation des Filters

Die molekularbiologischen Arbeiten der Bochumer Forschergruppe führten zu einem neuen Modell der dynamischen Regulation des Filters. "Es ist bekannt, dass dieser Filter innerhalb von Stunden mit vermehrter Durchlässigkeit auf Medikamente reagieren kann und andere Medikamente diesen Effekt - zumindest zum Teil - wieder aufheben können", erklärt Dr. Quack. Wie das auf Molekülebene funktioniert war aber unbekannt. Quack und seine Mitarbeiter entdeckten nun einen Regulationsmechanismus, bei dem durch Phosphorylierung (binden einer Phosphatgruppe) von Nephrin, einem zentralen, Strukturmolekül der Schlitzembran der Nierenkörperchen, die Filterfunktion stabilisiert wird. Fehlt diese Phosphorylierung, dann bindet Nephrin an ein zweites Eiweiß (beta-arrestin2) und wird aus dem Filterverbund entfernt. Es entsteht ein Loch im Filter, durch das kostbare, größere Eiweiße mit dem Harn verloren gehen. Wird Nephrin wieder phosphoryliert, dann wird der Filter abgedichtet, das Loch schließt sich. Beim Gesunden besteht ein Fließgleichgewicht zwischen Lochentstehung und Verschließen der Löcher, so dass nur sehr wenige Eiweiße auf diese Weise dem Körper verloren gehen.

Behandlungsmöglichkeiten durch Medikamente

Beim Diabetes mellitus kommt es bei vielen Betroffenen nach mehreren Erkrankungsjahren zu einer Verschiebung des Fließgleichgewichtes zu Gunsten der Lochentstehung im glomerulären Filter. Dadurch gehen von Jahr zu Jahr immer größere Mengen an Eiweiß verloren. "Dies ist auch prognostisch ein schlechtes Zeichen für das Überleben des Patienten", erklärt Dr. Sellin. Die Entdeckung des Mechanismus gibt Anlass zu der Hoffnung, dass neue Medikamente, die die Nephrinphosphorylierung verstärken und die Nephrindephosphorylierung hemmen, den fortschreitenden Eiweißverlust der Niere verhindern oder zumindest aufhalten können. "Das macht insbesondere den Patienten mit chronischen Nierenerkrankungen Hoffnung, die bei hohem Eiweißverlust der Nieren unweigerlich auf die Dialyse zusteuern", so Dr. Sellin.

Titelaufnahme

Ivo Quack, L. Christian Rump, Peter Gerke, Inga Walther, Tobias Vinke, Oliver Vonend, Thomas Grunwald, Lorenz Sellin: beta-Arrestin2 mediates Nephrin endocytosis and impairs slit diaphragm integrity. In: Proceedings of the National Academy of Sciences (PNAS), 2006, doi: 10.1073/pnas.0602587103, http://www.pnas.org/cgi/content/abstract/0602587103v1

Weitere Informationen

Prof. Dr. Lars Christian Rump, Medizinische Klinik I, Marienhospital Herne, Klinikum der Ruhr-Universität Bochum, Hölkeskampring 40, 44625 Herne, Tel: 02323/499-1671, E-Mail: lars-christian.rump@rub.de

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Berichte zu: Nephrin Niere

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie