Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gezielter Knochenaufbau kann Osteoporose heilen

17.08.2005


Freiburger Forscher entwickeln vollkommen neuen Ansatz zur effektiven Behandlung der Osteoporose



Die Ergebnisse der Freiburger Wissenschaftler um Professor Dr. Roland Schüle, Leiter der Forschungsgruppe Molekulare Gynäkologie an der Universitäts-Frauenklinik, und Dr. Thomas Günther, führen zu einem gänzlich neuartigen Konzept zur Behandlung der Volkskrankheit Osteoporose. Statt wie bei der bisher üblichen Therapie lediglich den mit der Osteoporose einhergehenden Knochenabbau zu verlangsamen, zielt das neue Konzept darauf ab, neue Knochensubstanz gezielt aufzubauen.



Etwa sechs Millionen Menschen leiden in Deutschland an Osteoporose. Der Knochenschwund ist eine Stoffwechselerkrankung der Knochen. Knochen sind keine tote Substanz, sondern lebendes Gewebe, das wie alle Gewebe des menschlichen Körpers während des gesamten Lebens durch Auf- und Abbau ständig erneuert wird. Die Grundsubstanz des Knochens wird von so genannten Osteoblasten abgeschieden. Diese knochenbilden-en Zellen liefern fortlaufend neues Knochengewebe. Damit die Knochen nicht ständig weiter wachsen, bauen so genannte Osteoklasten spezifisch Knochengewebe ab. Bei der Osteoporose ist das Gleichgewicht von Auf-, Um- und Abbau des Knochengewebes gestört, es wird mehr Knochensubstanz abgebaut als aufgebaut.

Erstmals ist es nun den Wissenschaftlern gelungen am Tiermodell zu zeigen, dass Osteoporose auf eine verringerte Aktivität der Osteoblasten zurückzuführen ist. Darüber hinaus konnten sie den Regulationsmechanismus in diesen knochenbildenden Zellen entschlüsseln.

Die Ergebnisse des Freiburger Forscherteams basieren auf Untersuchungen mit Zellkulturen und transgenen Mäusen. Die Wissenschaftler konnten nachweisen, dass der Transkriptions-Kofaktor Fhl 2 (four and a half LIM domains 2) an der Regulation des Aufbaus von Knochensubstanz beteiligt ist und dass sich diese Funktion auf die Osteoblasten beschränkt. Mäuse, bei denen die Funktion des Fhl 2 ausgeschaltet ist (so genannte knockout-Mäuse), entwickeln Osteoporose, die nachweislich auf eine verminderte Aktivität der Osteoblasten zurückzuführen ist. Ein Zuwachs an Knochengewebe hingegen lässt sich durch eine verstärkte Expression von Fhl 2 in den Osteoblasten transgener Mäuse erzielen. Wird Fhl 2 jedoch in den Osteoklasten vermehrt gebildet, so zeigt dies keinen Effekt.

Das Freiburger Forscherteam konnte auch den Mechanismus aufklären, über den Fhl 2 den Aufbau an Knochensubstanz fördert: Der Koaktivator Fhl 2 interagiert mit dem Transkriptionsfaktor Runx 2 (runt-related transcription factor 2), dessen zentrale Rolle in der Regulation der Osteoblasten bekannt ist, und verstärkt dessen Aktivität.

Die Kenntnis des Regulationsmechanismus, der für den Auf- und Abbau von Knochensubstanz verantwortlich ist, eröffnet eine ganz neue Strategie im Kampf gegen die Osteoporose. Wenn die Aktivität des Fhl 2 medikamentös gesteuert werden kann, wird es möglich sein, dem Verlust an Knochensubstanz direkt entgegenzuwirken, indem die knochenaufbauende Aktivität der Osteoblasten angekurbelt wird.

Die wissenschaftliche Arbeit ist in The EMBO Journal (2005), 1-8 erschienen und unter www.embojournal.org nachzulesen.

Kontakt:

Prof. Dr. Roland Schüle
Universitäts-Frauenklinik
Forschungsgruppe Molekulare Gynäkologie
Tel. 270-6310
Fax 270-6311
eMail roland.schuele@uniklinik-freiburg.de

Rudolf-Werner Dreier | idw
Weitere Informationen:
http://www.uniklinik-freiburg.de

Weitere Berichte zu: Knochengewebe Knochensubstanz Osteoblast Osteoporose

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics