Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrogliazellen auf die Finger geschaut

15.04.2005


Max-Planck-Forscher machen das Immunabwehrverhalten von Mikrogliazellen im Gehirn sichtbar


Mikrogliazelle in der Hirnrinde einer transgenen Maus. Die Fortsätze der Mikrogliazellen sind nicht statisch, sondern verändern sich fortwährend. Bild: MPI für medizinische Forschung


Mikrogliazelle (grün) und Astrozyt (rot) nach Verletzung einer Blutkapillare. Die Fortsätze der Mikrogliazelle umschließen den geschädigten Gefäßabschnitt. Bild: MPI für medizinische Forschung



Wissenschaftlern vom Max-Planck-Institut für medizinische Forschung in Heidelberg sowie vom Max-Planck-Institut für experimentelle Medizin in Göttingen ist es gelungen, das Verhalten der Immunabwehrzellen im Gehirn erstmals direkt zu beobachten. In der aktuellen Ausgabe von Science (Science, Epub ahead of print, 14. April 2005) beschreiben die Forscher nicht nur das geschäftige Treiben dieser Zellen im gesunden Gehirn, sondern auch deren Abwehrreaktion in den ersten Stunden nach einer Hirnblutung. Das verwendete Beobachtungsverfahren lässt sich auch auf andere Krankheitsmodelle anwenden und die Untersuchung des Mikrogliazellverhaltens in diesen Modellen könnte das Verständnis von Hirnerkrankungen maßgeblich erweitern.



Das Gehirn umfaßt zwei Zellpopulationen: Neurone und Gliazellen. Neurone sind für die Informationsverarbeitung und -weiterleitung via elektrischer Aktivität zuständig. Gliazellen dagegen wurden in der Vergangenheit oft als reine Stützzellen angesehen, die Neurone im Wesentlichen mit Nährstoffen versorgen. Neuere Untersuchungen zeigen jedoch, dass Gliazellen eine weit größere Bedeutung für die Funktion des Gehirns haben als bislang angenommen.

Es gibt verschiedene Typen von Gliazellen: Oligodendrozyten beispielsweise bilden die so genannten Myelinscheiden um Nervenfasern. Sie isolieren die Nervenfaser elektrisch - ähnlich wie die Kunststoffhülle eines Kabels - und ermöglichen dadurch erst eine schnelle neuronale Signalübertragung. Die Astrozyten regulieren unter anderem die molekulare Zusammensetzung des Extrazellulärraumes und beeinflussen damit den Gleichgewichtszustand im Gehirn. Mikrogliazellen schließlich sind die immunkompetenten Zellen des Gehirn. Sie sind die ersten Zellen, die auf pathologische Ereignisse reagieren und die Immunantwort des Gehirns einleiten.

Bislang konnten Mikrogliazellen nur in vitro, d.h. außerhalb des lebenden Organismus, untersucht werden. Neue Verfahren erlauben es nun jedoch einen direkten Blick ins Gehirn zu werfen und diese Zellen in vivo zu untersuchen. Das Forscherteam der beiden Max-Planck-Institute in Heidelberg und Göttingen hat sich dabei zweier Schlüsseltechniken bedient: der Zwei-Photonen-Mikroskopie und dem transgenen Tiermodell. In den Mäusen waren die Mikrogliazellen genetisch so verändert, dass sie zusätzlich ein grün fluoreszierendes Protein produzierten. Diese Proteine wurden mit Laserlicht zum Leuchten angeregt und dadurch die Zellen im Mikroskop sichtbar gemacht - und zwar durch die intakte Schädeldecke der Maus.

Bei diesen Untersuchungen fanden Axel Nimmerjahn, Frank Kirchhoff und Fritjof Helmchen nun heraus, dass die dünnen Fortsätze, sozusagen die "Finger" der Mikrogliazellen (Abb. 1) im gesunden Gehirn von Mäusen nicht in Ruhe sind, sondern ihre Umgebung fortwährend abtasten. Dabei interagieren sie mit Neuronen und anderen Zellen im Gehirn. Dieses Abtasten scheint ein wichtiger Mechanismus zum Aufrechterhalt des regulären Gleichgewichts und damit der gesunden Hirnfunktion zu sein.

Mit dem Laser konnten die Forscher aber nicht nur die Zellen sichtbar machen, sondern auch gezielt lokale Verletzungen der Blut-Hirnschranke verursachen. "Solche Verletzungen eignen sich als Modell für einen Bluthochdruck-bedingten Schlaganfall, bei dem ein - allerdings in der Regel größeres - Blutgefäß im Gehirn platzt und dadurch umliegende Bereiche schädigt", sagt Axel Nimmerjahn. Die Forscher konnten nun beobachten wie sich die Fortsätze der Mikrogliazellen innerhalb weniger Minuten ihren Weg durch das Dickicht umgebender Zellmaterie zum geschädigten Gefäßabschnitt bahnten, diesen scheinbar abdichteten (Abb. 2) und mit dem Abbau schädigender oder geschädigter Materie begannen. Dabei beteiligten sich umso mehr Mikrogliazellen an der Abwehrreaktion je schwerer die Verletzung, d.h. je größer das betroffene Areal war. Durch diesen neuartigen experimentellen Ansatz gelang es den Wissenschaftlern erstmals, die Reaktion der Immunabwehrzellen auf eine winzige Hirnblutung zu beobachten.

"Wir gehen davon aus, dass sich mit unserem Verfahren das Verhalten der Mikrogliazellen auch in anderen Krankheitsmodellen, wie zum Beispiel bestehenden Mausmodellen der Alzheimerschen Erkrankung, untersuchen lässt und wir dadurch zu einem besseren Verständnis der geschäftigen Immunabwehrzellen und ihrer Rolle bei Gehirnerkrankungen gelangen", erklärt Fritjof Helmchen. Für die Entwicklung neuer therapeutischer Ansätze zur Behandlung, aber auch zur Vorbeugung von Gehirnerkrankungen ist die Entschlüsselung der komplexen Vorgänge und zellulären Mechanismen des hirneigenen Abwehrsystems entscheidend.

Dr. Fritjof Helmchen | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpimf-heidelberg.mpg.de

Weitere Berichte zu: Gliazelle Immunabwehrzelle Mikrogliazelle Neuron

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Sicher und gesund arbeiten mit Datenbrillen
13.01.2017 | Bundesanstalt für Arbeitsschutz und Arbeitsmedizin

nachricht Vorhersage entlastet das Gehirn
13.01.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltweit erste Solarstraße in Frankreich eingeweiht

16.01.2017 | Energie und Elektrotechnik

Proteinforschung: Der Computer als Mikroskop

16.01.2017 | Biowissenschaften Chemie

Vermeintlich junger Stern entpuppt sich als galaktischer Greis

16.01.2017 | Physik Astronomie