Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verfeinerte Strahlentherapie bei Prostatakrebs - mehr Sicherheit und Lebensqualität für Patienten

30.10.2002


Das Universitätsklinikum Tübingen bietet weltweit als einzige Einrichtung die Monte Carlo Dosisberechnung bei der Prostatabestrahlung an. Dabei wird das umgebende Gewebe in die Berechnung der Strahlendosis einbezogen. Darüber hinaus ist Tübingen neben Detroit derzeit die einzige Einrichtung, die die natür-liche Bewegung der Prostata in die Bestrahlungsplanung einbezieht. Beide Techniken werden in Kombination mit der "Intensitätsmodulierten Strahlentherapie", (die für Patienten außer in Tübingen noch in Berlin und Heidelberg angeboten wird) angeboten.



Prostatakrebs ist das häufigste Krebsleiden des Mannes. Jedes Jahr erkranken rund 40 000 Männer neu in Deutschland, rund 10 000 sterben daran. Das Behandlungsspektrum reicht über Operation, Chemotherapie und Bestrahlung bis hin zu neuen, schonenden Verfahren. Die Strahlentherapie spielt dabei eine wichtige Rolle. Sie "deponiert" eine möglichst hohe Strahlendosis im Tumorgewebe mit dem Ziel, den Tumor bei weitestgehender Funktionserhaltung des benachbarten, gesunden Gewebes abzutöten. Zwar sind Krebszellen besonders empfindlich gegen die verwendete Röntgenstrahlung, aber alle Gewebe, die der Photonenstrahl auf seinem Weg durch den Körper durchdringt, werden ebenfalls belastet. Deshalb dürfen bestimmte Grenzwerte nicht überschritten werden und bestimmte Körperteile sind besonders verwundbar. Bei der Bestrahlung der Prostata ist dies zum Beispiel der Enddarm: Entzündungen und häufiger Stuhldrang können als Folge der Bestrahlungen auftreten.

... mehr zu:
»Gewebe »Prostata »Strahlentherapie


Verfeinerte strahlentherapeutische Verfahren, die überwiegend kontinenz- und zum Teil auch potenzerhaltend sind, können diesen Nebenwirkungen im Darmbereich ver-ringern. Das bedeutet mehr Sicherheit und Lebensqualität für die Patienten. Eine derartig schonende Bestrahlung von Prostatakrebs ist in Deutschland derzeit nur an wenigen Zentren wie z.B. am Uniklinikum Tübingen, der Berliner Charité und dem DKFZ in Heidelberg möglich Die Wissenschaftler und Ärzte des Tübinger Klinikums zählen damit sowohl bei den Forschungsergebnissen als auch bei der Patientenbehandlung zur Spitze der internationalen Forschung.

Wie funktioniert das, wenn man nicht breitflächig das die Prostata umgebende Gewebe mitbestrahlen und empfindliche Bereiche schädigen will?

Hier kommen neben den Strahlentherapeuten auch die Spezialisten der Medizinischen Physik zum Einsatz, die anhand von Computertomographiedaten das Bestrah-lungsfeld den Umrissen des Tumors genau anpassen und parallel dazu die Strahlungsintensität innerhalb des Feldes variieren. Der Fachbegriff dazu lautet "Intensitätsmodulierte Strahlentherapie". Die gesunden Bereiche werden quasi "ausgeblendet" (d.h. gar nicht oder weniger bestrahlt), indem der Tumor aus verschiedenen Richtungen mit unterschiedlicher Dosisverteilung bestrahlt wird.

Das dazu erforderliche Gerät heißt Multileaf Collimator. Im Kopf des Bestrahlungsgerätes befinden sich ca. 80 schmale Lamellen, die - jede mit einem eigenen

Motor - elektronisch gesteuert in das Bestrahlungsfeld eingefahren werden können. Damit können nicht nur die Bestrahlungsfelder geformt sondern auch die Dosis innerhalb des Bestrahlungsfeldes variiert werden. Auf diese Weise werden Bestrahlungsfeld und Bestrahlungsdosis genau an den einzelnen Patienten angepasst.

Kein ortsfestes Organ..........

Aber das ist noch nicht alles: Da sich die Prostata durch ihre Lage neben Dickdarm und Blase je nach Füllmenge an einem anderen Platz befinden kann, ist es sehr schwierig, trotz genauster Lagerung des Patienten das Organ immer an derselben Stelle "anzutreffen". Das kleine Organ kann sich bis um 1 cm verschieben. Aus diesen Gründen werden in Tübingen mehrere patientenbezogene Computertomographien angefertigt und aus diesem individuellen Datenmaterial wird berechnet, wo die Prostata bei jedem einzelnen Patienten liegt, d.h. die zusätzliche Bewegung des Organs wird in den Bestrahlungsplan einkalkuliert. Weltweit wird nur in Tübingen und in Detroit diese natürliche Bewegung der Prostatadrüse in die Bestrahlungsplanung systematisch einbezogen!

Nur in Tübingen....

Eine Spezialität der Tübinger Forscher an der Radioonkologischen Klinik des Tübinger Universitätsklinikums ist die Anpassung der Dosisberechnung an das umgebende Gewebe. Normalerweise geht man bei der Berechnung der Dosis rein physikalisch von einer wasserähnlichen Umgebung aus. Dies ist bei der Prostata auch gegeben. Ganz anders sieht es aber im Kopf-/Hals-Bereich oder in der Lunge aus, wo stark differenzierte Gewebebereiche wie Knochen, Lungengewebe (Luft), Fett und Muskeln vorkommen. Hier kommt in Tübingen eine weltweit einzigartige spezielle Dosisberechnung (Monte Carlo) zum Einsatz, die die verschiedenen Strukturen berücksich-tigt. Dabei gilt Monte Carlo bei einer Fehlerquote unter 1% als die präziseste Dosisberechnungsmethode.


Ansprechpartner für nähere Informationen

Universitätsklinikum Tübingen
Radioonkologische Klinik (Ärztlicher Direktor Prof. Michael Bamberg)

Prof. Wilfried Budach (Strahlentherapie, Patientenbehandlung)
Tel. 0 70 71 / 29-8 61 42, Fax 0 70 71 / 29-58 94
Prof. Fridtjof Nüsslin (Medizinische Physik)
Tel. 0 70 71 / 29-8 21 76, Fax 0 70 71 / 29-59 20
Dr. Markus Alber (Intensitätsmodulierte Strahlentherapie, Organbewegung, Monte Carlo), Tel. 0 70 71 / 29-8 60 55, Fax 0 70 71 / 29-59 20

Dr. Ellen Katz | idw

Weitere Berichte zu: Gewebe Prostata Strahlentherapie

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Entschlüsselung von Kommunikationswegen zwischen Tumor- und Immunzellen beim Eierstockkrebs
06.12.2016 | Wilhelm Sander-Stiftung

nachricht Tempo-Daten für das „Navi“ im Kopf
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie