Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Ansatz bei Chemotherapie-Resistenz

11.06.2008
Wissenschaftler blockieren gezielt Mechanismus in Krebszellen

Krebszellen, die resistent gegen eine Chemotherapie werden, sind eines der größten Hindernisse in der Krebstherapie. Einige Krebsarten wie Hautkrebs reagieren auf eine Behandlung nur sehr eingeschränkt.

Wissenschaftler um PD Dr. Margarete Schön und Prof. Dr. Michael Schön vom Rudolf-Virchow-Zentrum und der Hautklinik der Universität Würzburg und Göttingen konnten jetzt im Tiermodell die Resistenz überwinden. Die Tiere wurden wieder empfindlich für die Chemotherapie. Ihre Ergebnisse beschreiben sie heute in der Online-Veröffentlichung der renommierten Fachzeitschrift "Journal of the National Cancer Institute".

Eine Chemotherapie ist oft die letzte Hoffnung, wenn andere Methoden den Krebs zu bekämpfen, versagt haben. Sie wird daher nur bei besonders gefährlichen Krebsarten durchgeführt oder erst dann, wenn sich bereits Metastasen im Körper gebildet haben. Dabei werden dem Körper so genannte Zytostatika zugeführt, die Krebszellen an ihrem ungehinderten Wachstum und der Vermehrung hindern und so abtöten sollen. Krebszellen haben nämlich das normale Programm einer Zelle abgestellt, die ein unkontrolliertes Wachstum und den natürlichen Zelltod kontrolliert. Zytostatika funktionieren auch im besten Falle.

Doch eine große Zahl der Krebsarten, wie der "schwarze Hautkrebs", ist nahezu komplett widerstandsfähig gegen die Therapie. Die Krebszellen haben ihre Strategie geändert und sich einen alternativen Weg gewählt. In der Zelle gibt es nämlich viele Wege, die das Wachstum und die Vermehrung kontrollieren. Man spricht von einer Chemotherapie-Resistenz.

Die Resistenz ist der größte Feind der Therapie, die Chemotherapie aber oft die letzte Therapiemöglichkeit. Wissenschaftler versuchen daher seit einigen Jahren die verschiedenen Mechanismen der Resistenzentwicklung genauer verstehen, um diese dann gezielt blockieren zu können und die Krebszellen wieder empfindlicher für die Chemotherapie zu machen. Bisher ist allerdings noch kein Medikament erfolgreich in der Anwendung.

Forscher um Margarete und Michael Schön suchten nun nach einem Blocker für einen speziellen Weg, von dem bekannt ist, dass er nicht nur bei der Entstehung von Krebs eine Rolle spielt, sondern auch die beschriebene Chemotherapie-Resistenz auslöst: der NF-kappa-B-Weg. Den Forschern ist es gelungen, das Übel direkt an der Wurzel zu packen. Sie haben einen neuen Blocker gefunden, der den gesamten Weg lahmlegt. Das Ergebnis ist vielversprechend: Krebszellen in Kultur, aber auch im Tiermodell werden wieder empfindlich für die Chemotherapie.

In ihren Experimenten behandelten sie Tiere, die an Lungenkrebs erkrankt waren, nur mit KINK-1 oder verschiedenen Zytostatika, beispielsweise Doxorubicin, alleine, und mit einer Kombination aus einem Zytostatikum und KINK-1. Nur eine kombinierte Gabe war erfolgreich. Dann konnte die Bildung von Metastasen merklich reduziert werden und so der Krebs behandelt werden. Der neue Wirkstoff fungiert also nicht selbst als Chemotherapeutikum, sondern hilft nur, die Zellen wieder empfindlicher zu machen für das zusätzlich verabreichte Zytostatikum, also für die Chemotherapie. KINK-1 ist also ein Erfolg versprechendes Mittel gegen die Chemotherapie-Resistenz.

Für den Hautarzt Michael Schön, der täglich mit dem Problem der Chemotherapie-Resistenz zu kämpfen hat, ein wichtiger Schritt: "Unsere Ergebnisse liefern einen erfolgreichen Ansatz, der ein wichtiger Baustein in der Krebstherapie werden kann. Der NF-kappa-B-Weg ist in vielen Krebsarten vorhanden, daher müsste die Therapie sehr universell funktionieren. Unsere bisherigen Studien zeigen außerdem eine sehr hohe Verträglichkeit." Nun müsse die Übertragbarkeit auf andere Krebsarten genau geprüft werden. Wie bei jedem Medikament müssen jetzt die verschiedenen Stufen der präklinischen und klinischen Studien durchlaufen werden.

Für ihre Arbeit wurde das Forscherpaar Margarete und Michael Schön am 25.04.08 in Frankfurt mit dem MTTC Award des Deutschen Council der Fortbildungsinitiative "Molecular Targeted Therapy of Cancer" ausgezeichnet.

Margarete Schön, B. Gregor Wienrich, Susanne Kneitz, Helga Sennefelder, Katharina Amschler, Verena Vöhringer, Olaf Weber, Thorsten Stiewe, Karl Ziegelbauer and Michael Schön. KINK-1, a novel small-molecule inhibitor of IKKbeta, and the susceptibility of melanoma cells to antitumoral treatment. J. Natl. Cancer Inst. 100 (12), 862-875, 2008.

Kontakt:

Prof. Dr. Michael Schön
(seit einigen Wochen jetzt in Göttingen)
Leiter der Hautklinik der Universität Göttingen
Tel: 0551-39-6401
Email: michael.schoen@med.uni-goettingen.de
PD Dr. Margarete Schön
Rudolf-Virchow-Zentrum, Universität Würzburg
Tel.: 0931-201-48977
Sonja Jülich
Leiterin Presse- und Öffentlichkeitsarbeit
Rudolf-Virchow-Zentrum, Universität Würzburg
Tel.: 0931-201-48714

Sonja Jülich | idw
Weitere Informationen:
http://www.rudolf-virchow-zentrum.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neurorehabilitation nach Schlaganfall: Innovative Therapieansätze nutzen Plastizität des Gehirns
25.09.2017 | Deutsche Gesellschaft für Neurologie e.V.

nachricht Die Parkinson-Krankheit verstehen – und stoppen: aktuelle Fortschritte
25.09.2017 | Deutsche Gesellschaft für Neurologie e.V.

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

Junge Physiologen Tagen in Jena

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die Parkinson-Krankheit verstehen – und stoppen: aktuelle Fortschritte

25.09.2017 | Medizin Gesundheit

Neurorehabilitation nach Schlaganfall: Innovative Therapieansätze nutzen Plastizität des Gehirns

25.09.2017 | Medizin Gesundheit

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungsnachrichten