Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Automatisch Epileptische Anfälle erkennen

26.05.2008
Wissenschaftler in Freiburg entwickeln neue Methoden zur Erkennung und Klassifizierung epileptischer Anfälle

Epilepsie-Patienten leiden unter plötzlichen Krampfanfällen, die durch die gleichzeitige Entladung einer großen Anzahl von Nervenzellen im Gehirn ausgelöst werden. Jeder Anfall trifft sie wie aus heiterem Himmel - wenn sich ein Gewitter neuronaler Aktivität im Gehirn zusammenbraut, bekommen sie davon nichts mit.

Wissenschaftler um Ralph Meier und Ad Aertsen am Bernstein Zentrum für Computational Neuroscience und der Universität Freiburg haben nun eine Methode entwickelt, mit der die Gehirnströme der Patienten gemessen und gleichzeitig automatisch ausgewertet werden können. Da Veränderungen neuronaler Aktivität meist einige Sekunden vor den ersten äußeren Anzeichen des Anfalls auftreten, könnten Patienten und Klinikpersonal mit dieser Methode bei einem nahenden Anfall vorgewarnt werden. In Zukunft hofft man außerdem auf die Entwicklung von Implantaten, die gezielt Gehirnströme beeinflussen um einem beginnenden Anfall entgegenzuwirken. Für solche Systeme ist die rechtzeitige Erkennung des nahenden Anfalls eine Voraussetzung.

Dem Freiburger Verfahren zur Datenauswertung liegt die Elektroenzephalographie (EEG) zu Grunde. Mit Hilfe von auf der Kopfhaut angebrachten Elektroden werden Spannungsveränderungen des Gehirns durch die Schädeldecke gemessen. Bei einem epileptischen Anfall kommt es - je nach Anfallstyp - zu verstärkten Entladungen in bestimmten Frequenzbereichen oder es treten ungewöhnliche Entladungsmuster auf. Auch im gesunden EEG treten Schwingungen in verschiedenen Frequenzbereichen auf, die jeweils bestimmte Zustände des Gehirns wie Schlaf, Dösen oder Erregung widerspiegeln. Diese gesunden Schwingungsmuster mit Hilfe mathematischer Algorithmen von den epileptischen Entladungen verlässlich zu unterscheiden ist das Ziel der Freiburger Wissenschaftler.

... mehr zu:
»EEG

Bisher gab es schon einige Ansätze, mit Hilfe von mathematischen Algorithmen die Auswertung des EEG zu automatisieren. Nicht jedes Verfahren aber eignet sich für jede Form von Anfällen. Um eine optimale Erfassung aller Anfallstypen zu gewährleisten, nutzten die Wissenschaftler um Meier daher verschiedene mathematische Auswertungsverfahren parallel. "Unsere Methode bedarf keiner individuellen Anpassung, darüberhinaus eignet sie sich für alle Anfallstypen", erklärt Meier.

An etwa 1400 Stunden Langzeit-EEG mit insgesamt 91 verifizierten Anfällen wendeten Meier und seine Kollegen das Verfahren an um seine Leistungsfähigkeit zu überprüfen. Fast alle Anfälle wurden von dem Verfahren rechtzeitig erkannt. Nur etwa einmal alle zwei Stunden produzierte ihr System eine Fehlankündigung eines Anfalls, der dann nicht stattfand. Damit zeigt das Verfahren eine bessere Erkennungsgenauigkeit, als bisherige Methoden. Zusätzlich konnte das System verschiedene Anfallverläufe voneinander unterscheiden und trägt damit zur Epilepsiediagnose bei. "Im Prinzip ist das Programm bereit für eine klinische Anwendung, es sind nur noch ein paar technische Hürden bei der routinemässigen Anbindung an die klinsche Datenerfassung zu nehmen", sagt Meier.

Originalveröffentlichung:
Ralph Meier, Heike Dittrich, Andreas Schulze-Bonhage, Ad Aertsen (2008). Detecting epileptic seizures in long-term human EEG: A new approach to automatic online and real-time detection and classification of polymorphic seizure patterns.

Journal of Clinical Neurophysiology, online publiziert am 8. Mai 2008

Kontakt:
Dr. Ralph Meier
Bernstein Center for Computational Neuroscience
Albert-Ludwigs-Universität Freiburg
Schänzlestr. 1
79104 Freiburg
Tel.: 0761/203-2864
E-Mail: meier@biologie.uni-freiburg.de

Rudolf-Werner Dreier | idw
Weitere Informationen:
http://www.uni-freiburg.de

Weitere Berichte zu: EEG

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics