Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum der Basale Brustkrebs so aggressiv sein kann

28.11.2013
Brustkrebs ist die häufigste Krebserkrankung bei Frauen. Darunter ist eine Form besonders aggressiv: der Basale Brustkrebs, auch Östrogen-negativer Brustkrebs genannt.

Forscher des Max-Delbrück-Centrums (MDC) haben jetzt Hinweise gefunden, warum diese Krebsart so bösartig sein kann. Zugleich identifizierten sie Angriffspunkte für die Entwicklung neuer und wirksamerer Therapien.

Die Arbeit von Dr. Jane Holland, Prof. Walter Birchmeier (MDC), Dr. Balász Györffy (Charité, Berlin und Semmelweis Universität, Budapest, Ungarn) sowie Dr. Klaus Eckert (EPO Experimentelle Pharmakologie und Onkologie GmbH), hat jetzt Cell Reports online (http://dx.doi.org/10.1016/j.celrep.2013.11.001) veröffentlicht.

Im Gegensatz zu Östrogen-positivem Brustkrebs wird der Basale Brustkrebs nicht von diesem weiblichen Geschlechtshormon gesteuert. Er hat dafür keine Bindungsstellen (Rezeptoren), weshalb ein „Hormonentzug“ (Antihormontherapie) bei ihm wirkungslos ist, im Gegensatz zu Östrogen- oder auch Progesteron-positivem Brustkrebs. Progesteron ist ebenfalls ein weibliches Geschlechtshormon.

Bei diesen Brustkrebsformen können Ärzte das Krebswachstum mit Antihormontherapien unterdrücken, da die Medikamente die Bindungsstellen für Östrogen oder Progesteron auf der Oberfläche der Krebszellen blockieren. Auch Brustkrebs, der Bindungsstellen für den Wachstumsfaktor Her2 hat (engl. Abk. für human epidermal growth factor receptor 2– Epidermaler Wachstumsfaktor-Rezeptor 2 des Menschen), lässt sich zielgerichtet behandeln, mit einem Antikörper, der die Rezeptoren für Her2 besetzt.

Diese Therapien sind beim „basal-like“ Brustkrebs-Subtyp nicht möglich. „Denn in den meisten Fällen (etwa 70 Prozent)“, so Dr. Holland und Prof. Birchmeier, „hat er weder Rezeptoren für Östrogen, noch für Progesteron oder Her2, ist also dreifach negativ. Die einzig mögliche Behandlung gegen diesen Krebs ist deshalb Chemotherapie. “Weil er aber nur schwer zu therapieren ist, forschen Wissenschaftler und Kliniker nach neuen Wegen, diese rasch wachsende und aggressive Krebsart gezielter zu bekämpfen.

Unrühmliches Triplett
Bekannt war, dass zwei Signalwege bei dem bösartigen Wachstum von Basalem Brustkrebs eine wichtige Rolle spielen können. Zum einen der Wnt/beta-Catenin-Signalweg, den Prof. Walter Birchmeiers Labor schon seit vielen Jahren untersucht. Dieser Signalweg ist wichtig für die Embryonalentwicklung, das Zellwachstum (Proliferation) und die Zellreifung oder Zellspezialisierung (Differenzierung). In der Klinik zeigt sich, dass Patientinnen mit einem hohen beta-Catenin-Wert an Basalen Brustkrebs erkrankt sein können.

Hinzu kommt ein Wachstumsfaktor, den die Forschung nach seinem Entdeckungsort in der Leber als Hepatocyte Growth Factor/Scatter Factor (HGF/SF) bezeichnet. Da dieser Faktor Zellen aus ihrem Verband lösen kann, heißt er auch „Streufaktor“ (Scatter Factor) und ist deshalb für die Krebsforschung wichtig, wie Prof. Walter Birchmeier und seine Mitarbeiter mehrfach nachweisen konnten. Denn bindet HGF/SF an seinen Rezeptor (Met) in der Hülle der Krebszelle, kurbelt er das Krebswachstum an.

Hauptantreiber für den Basalen Brustkrebs identifiziert
Dr. Holland konnte jetzt zeigen, dass ein unrühmliches Triplett, Wnt/beta-Catenin und HGF/SF, plus ein weiterer Faktor, daran schuld sind, dass der Basale Brustkrebs wächst. Mit Hilfe von erwachsenen Mäusen, bei denen beide Signalwege gleichzeitig mutiert und aktiviert sind, konnte sie die ersten beiden Hauptantreiber, die die Krebszellen dazu bringen, sich zu vermehren, dingfest machen. Weiter beteiligt ist ein System von Signalproteinen (Chemokinen), das von den beiden Signalwegen Wnt/beta-Catenin und HGF/SF angeschaltet wird. Jane Holland, – sie ist Australierin – hat schon in ihrer Doktorarbeit an der Universität von Adelaide über dieses Chemokinsystem gearbeitet. Mäuse, denen zusätzlich das Gen für den Rezeptor CXCR4 dieses Chemokinsystems ausgeschaltet wurde, sind gegen den Krebs gefeit. „Solche genetischen Experimente zeigen klar, dass die dritte Komponente essentiell ist“, betont Prof. Birchmeier.

Im Reagenzglas und bei den Mäusen testeten die Forscher in Berlin-Buch dann verschiedene Hemmstoffe, die bereits in klinischen Versuchen gegen andere Krebsarten erprobt, aber noch nicht zur Behandlung von Brustkrebs angewendet werden und auch nicht zugelassen sind. Sie gingen schrittweise vor, bis sie schließlich mit Kombinationen der verschiedenen Inhibitoren an allen drei Angriffspunkten ansetzten. Damit gelang es ihnen, das Krebswachstum bei den Mäusen dramatisch zu unterdrücken. Dr. Holland und Prof. Birchmeier: „Ein dreifacher Angriff, der sowohl das Chemokinsystem als auch die beiden Signalwege Wnt/beta-Catenin und HGF/Met blockiert, ist am wirksamsten.“ Dr. Holland weiter: „Das zeigt sich daran, dass die Mäuse nach der Therapie ihres Brustkrebs anstatt Tumorgewebe wieder normale, sogenannte alveoläre Strukturen bildeten.“ Jetzt hoffen die Forscher, dass ihre Erkenntnisse Eingang in die weitere präklinische und, wenn erfolgreich, auch in die klinische Forschung finden werden.

* Combined Wnt/-catenin, Met and CXCL12/CXCR4 Signals Characterize Basal Breast Cancer and Predicts Disease Outcome

Jane D. Holland1*, Balázs Győrffy2,3, Regina Vogel1, Klaus Eckert4, Giovanni Valenti1, Liang Fang1, Philipp Lohneis3, Sefer Elezkurtaj3, Ulrike Ziebold1, and Walter Birchmeier1

1 Department of Cancer Research, Max Delbrück Center for Molecular Medicine (MDC), Robert-Roessle-Str. 10, Berlin, Germany
2 Research Laboratory of Pediatrics and Nephrology, Hungarian Academy of Sciences - Semmelweis University, Bókay u. 53-54, Budapest, Hungary
3 Institute for Pathology, Charité Medical University, Charitéplatz 1, Berlin, Germany
4 Experimental Pharmacology & Oncology (EPO), Robert-Roessle-Str. 10, Berlin, Germany

http://dx.doi.org/10.1016/j.celrep.2013.11.001

Kontakt:
Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
in der Helmholtz-Gemeinschaft
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Weitere Informationen:
http://www.mdc-berlin.de/

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics