Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Akute Myeloische Leukämie - Den Bremser bremsen

20.12.2016

LMU-Forscher zeigen, warum die Standardbehandlung bei dem aggressiven Blutkrebs oft nicht wirken kann – und entdecken damit nicht nur einen Biomarker für die Effizienz der Medikamente, sondern auch einen Angriffspunkt für neue Therapien.

Akute Myeloische Leukämie, kurz AML – eine solche Diagnose ist in der Regel eine schwere Bürde. Die Aussichten, diese meist aggressiv verlaufende Krebserkrankung der Blutzellen zu überleben, sind nicht sonderlich gut. Zur Standardtherapie gehört die Behandlung mit Cytarabin, einem sogenannten Nucleosidanalogon.


Entartete Vorläuferzellen (AML-Blasten) im Knochenmark eines Patienten mit Akuter Myeolischer Leukämie. Die intensive Braunfärbung zeigt die verhängnisvolle Aktivität des Enzyms SAMDH1 – bei einem schlechtem Ansprechen des Patienten auf eine Cytarabin-haltige Therapie. Aufnahme: Institut für Pathologie, Universitätsmedizin Göttingen

Doch bei vielen Patienten kommt es nach anfänglichen Behandlungserfolgen zu einem deutlichen Fortschreiten der Erkrankung und zu Resistenzen gegen das Medikament. Warum das so ist, konnten Wissenschaftler um Oliver T. Keppler, Inhaber des Lehrstuhls für Virologie am Max von Pettenkofer-Institut der LMU, und Jindrich Cinatl Jr., Professor am Institut für Medizinische Virologie der Universität Frankfurt, dem Keppler bis 2015 vorstand, nun zeigen.

Normalerweise wird das Medikament im Körper rasch in Zellen aufgenommen und chemisch modifiziert, mit einer zusätzlichen Triphosphat-Gruppe, einem kleinen Molekülrest. Die so entstandene Verbindung ist die eigentlich therapeutisch aktive Substanz, sie legt die Synthese der Erbsubstanz DNA in den schnell wachsenden Krebszellen lahm. Doch es gibt einen neu identifizierten „Gegenspieler“:

Ein körpereigenes Enzym, das unter dem Kürzel SAMHD1 läuft, spaltet eben jene Triphosphat-Gruppe wieder vom aktiven Wirkstoff ab. Den verhängnisvollen Mechanismus zeigen die Wissenschaftler im renommierten Fachblatt Nature Medicine auf.

Falsche Bausteine eingeschmuggelt

Oliver Keppler ist HIV-Forscher und untersucht die pathogenen Mechanismen des HI-Virus, des AIDS-Erregers. Deshalb kannte sein Team das Enzym SAMHD1 aus einem anderen Zusammenhang – der antiviralen Therapie bei HIV-Infektion: Um sich in menschlichen Zellen vermehren zu können, muss das Virus sein Erbmaterial aus RNA erst einmal umkopieren in DNA, aus der die Gene des Menschen gemacht sind.

Um diese Reverse Transkription zu unterbrechen, werden ebenfalls Nukleosidanaloga als Medikamente eingesetzt; sie werden sozusagen als falsche Bausteine in den Kopiervorgang eingeschmuggelt. So entsteht keine intakte Virus-DNA, die HIV-Vermehrung wird gestoppt. Das körpereigene Enzym SAMHD1 hilft sogar noch dabei, in dem es die regulären DNA-Bausteine, die das Virus eigentlich braucht, wegschnappt und zerlegt.

Darum gingen die Forscher zunächst davon aus, dass auch bei der Akuten Myelosischen Leukämie ein ähnlicher Mechanismus greifen könnte, der die Medikamentenwirkung unterstützt. Doch das Gegenteil ist der Fall. „Überraschenderweise ist die aktive Form des Cytarabins selbst ein Substrat von SAMHD1“, sagt Keppler, eine Substanz also, die das Enzym umsetzt und damit unwirksam macht. „Es gibt Hinweise darauf, dass dies auch bei weiteren, in der Tumortherapie wichtigen Nucleosidanaloga der Fall ist.“

Gemeinsam mit einer großen Gruppe von Klinikern, Pathologen, Pharmakologen, Biochemikern und Biostatistikern konnten die Wissenschaftler um Keppler weiterführend in Mausmodellen der AML und retrospektiven Untersuchungen bei Patienten mit AML das Enzym SAMHD1 als entscheidenden Faktor für ein Versagen der Cytarabin-Therapie identifizieren.

Ihre Untersuchung zeige, schreiben die Wissenschaftler, dass SAMHD1 ein zellulärer Biomarker dafür sei, die Wirksamkeit von Medikamenten, die auf Nukleosidanaloga basieren, abzuschätzen, und zudem eine nicht unwesentliche Rolle für den individuellen Verlauf der Akuten Myeloischen Leukämie spiele. Weitere Studien könnten zudem zeigen, ob es erfolgversprechende Ansätze gibt, die Aktivität von SAMHD1 zu dämpfen und damit die Wirksamkeit der derzeitigen Medikamente zu verbessern.

Publikation:
SAMHD1 is a biomarker for cytarabine response and a therapeutic target in acute myeloid leukemia
Constanze Schneider, Thomas Oellerich, Hanna-Mari Baldauf, Sarah-Marie Schwarz, Dominique Thomas, Robert Flick, Hanibal Bohnenberger, Lars Kaderali, Lena Stegmann, Anjali Cremer, Margarethe Martin, Julian Lohmeyer, Martin Michaelis, Veit Hornung, Christoph Schliemann, Wolfgang E. Berdel, Wolfgang Hartmann, Eva Wardelmann, Federico Comoglio, Martin-Leo Hansmann, Alexander F Yakunin, Gerd Geisslinger, Philipp Ströbel, Nerea Ferreirós, Hubert Serve, Oliver T. Keppler & Jindrich Cinatl Jr.
Nature Medicine 2016

Ansprechpartner:
Prof. Dr. med. Oliver T. Keppler
Vorstand Virologie (chair of virology)
LMU, Max von Pettenkofer-Institut
Nationales Referenzzentrum für Retroviren
Tel.: 089-2180-72901
E-Mail: keppler@mvp.uni-muenchen.de

Luise Dirscherl | Ludwig-Maximilians-Universität München
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Medikamente mildern Mukoviszidose
23.01.2018 | Medizinische Hochschule Hannover

nachricht Dreifachblockade am Glioblastom
23.01.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks Industrie & Wirtschaft
Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics