Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftler der ETH Zürich und eines ETH-Spin-offs haben ein neuartiges Polymer zur Materialbeschichtung entwickelt

15.02.2016

Wissenschaftler der ETH Zürich und eines ETH-Spin-offs haben ein neuartiges Polymer zur Materialbeschichtung entwickelt. Es verhindert, dass sich auf einer Oberfläche ein Biofilm ansetzt. Die Forscher können damit erstmals verschiedene Materialien mit dem gleichen Polymer behandeln, wobei die Beschichtung sehr beständig ist. Mögliche Anwendungen liegen unter anderem im medizinischen Bereich.

Die inneren Werte und das Äussere sind zwei Paar Stiefel, auch in der Materialwissenschaft. So kommt es vor, dass für eine technische Anwendung ein bestimmtes Material grundsätzlich hervorragend geeignet wäre, wenn da nicht seine unvorteilhafte Oberfläche wäre.


Das Beschichtungspolymer ist vielseitig anwendbar – wie ein Schweizer Taschenmesser. (Bild: Colourbox.de)

Materialwissenschaftler lösen dieses Problem, indem sie das Material beschichten. Beispielsweise um dessen Oberfläche gleitfähiger zu machen oder – etwa bei Anwendungen unter Wasser oder im biomedizinischen Bereich – um zu verhindern, dass sich darauf mit der Zeit ein Belag mit Algen beziehungsweise mit Proteinen oder Bakterien bildet.

Um beispielsweise Metalle vor Bewuchs zu schützen, kommen häufig wasseranziehende Polymere zum Einsatz. Solche Polymerschichten lagern Wassermoleküle ein und verhindern so, dass sich andere unerwünschte Moleküle ablagern können.

Viele der derzeit verwendeten Beschichtungen sind nicht sehr beständig gegen äussere Einflüsse, da sie chemisch nur über eine schwache elektrostatische Bindung mit dem Material verbunden sind. Andere bestehende Beschichtungsprozesse sind in der Anwendung meistens sehr aufwendig und benötigen mitunter giftige Lösungsmittel.

Feste chemische Bindung an mehrere Materialien

Wissenschaftler um Nicholas Spencer, Professor für Oberflächentechnik, und Forscher des ETH-Spin-offs Susos suchten daher nach einer einfachen Lösung, oberflächenaktive Moleküle mit einer festen – sogenannt kovalenten – chemischen Bindung an Oberflächen zu binden.

Und zwar so, dass man damit unterschiedliche Materialien beschichten kann, sowie Geräte, die aus mehreren verschiedenen Materialien zusammengesetzt sind. «Wir wollen ein Beschichtungs-Polymer, das so vielseitig anwendbar ist wie ein Schweizer Taschenmesser», sagt Spencer.

Ein solches zu entwickeln, ist den Wissenschaftlern auch gelungen. Das Molekül hat ein langes «Rückgrat». Von diesem gehen einerseits wasseranziehende Seitenketten aus, welche den Bewuchsschutz vermitteln. Anderseits hat das Polymer zwei Arten von Seitenketten für die kovalente Bindung an Metalle: eine für die Bindung an Silizium und Glas, eine andere für die Bindung an Oxide der sogenannten Übergangsmetalle, zu denen unter anderem Titan und Eisen gehören.

«Dip and rinse»

«Beschichtungen mit unserem neuen Polymer sind sehr einfach. It’s just dip and rinse – eintauchen und abtropfen», sagt Spencer. «Und die Beschichtung widersteht auch harschen Bedingungen wie Säuren, Basen, hohen Salzkonzentrationen und Tensiden.»

Das ETH-Spin-off Susos hat das Polymer zum Patent angemeldet. Mögliche Anwendungen sehen die Wissenschaftler primär in der biomedizinischen Diagnostik und der Medizintechnik, beispielsweise für Biosensoren, Implantate und künftige implantierbare Wirkstoffverabreichungssysteme. Denkbar wären aber auch Anwendungen in der Wasseraufbereitung, Schifffahrt und Fischerei sowie der Lebensmittelindustrie, zum Beispiel bei Verpackungen.

Das «Taschenmesser» in seiner jetzigen Form ist dabei vielseitig anpassbar und ermöglicht auch Weiterentwicklungen. So wäre es möglich, das molekulare Rückgrat des Polymers mit Seitenketten zu bestücken, die an weitere Materialen binden, oder man könnte die biofilmverhindernden Seitenketten durch solche mit anderen Eigenschaften ersetzen, wie Spencer sagt.

Literaturhinweis

Serrano A, Zürcher S, Tosatti S, Spencer ND: Imparting Nonfouling Properties to Chemically Distinct Surfaces with a Single Adsorbing Polymer: A Multimodal Binding Approach. Macromolecular Rapid Communications 2016, doi: 10.1002/marc.201500683 [http://dx.doi.org/10.1002/marc.201500683]

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2016/02/eines-fuer...

Fabio Bergamin | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie