Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltweit kleinstes Fachwerk

02.02.2016

Das kleinste von Menschen gemachte Fachwerk haben Forscher des KIT nun in der Fachzeitschrift Nature Materials vorgestellt. Mit Strebenlängen von unter einem Mikrometer und Strebendurchmessern von 200 Nanometern sind seine Bauteile aus glasartigem Kohlenstoff rund einen Faktor fünf kleiner als vergleichbare sogenannte Metamaterialien. Durch die kleine Dimension werden bisher unerreichte Verhältnisse von Festigkeit zu Dichte erzielt. Anwendungen als Elektroden, Filter oder optische Bauteile könnten möglich werden. (DOI: 10.1038/nmat4561)

„Leichtbau-Werkstoffe wie Knochen und Holz findet man überall in der Natur“, erklärt Dr.–Ing. Jens Bauer vom Karlsruher Institut für Technologie, Erstautor der Studie. „Sie vereinen hohe Tragkraft und kleines Gewicht und sind so ein Vorbild für mechanische Metamaterialien für technische Anwendungen.“


Erst unter dem Mikroskop kann man das weltweit kleinste Fachwerk erkennen, dessen Strebendurchmesser 0,2 und die Gesamtgröße rund 10 Mikrometer betragen.

Bild: J.Bauer/KIT

Metamaterialien sind Stoffe, deren Struktur im Größenbereich von Mikrometern (millionstel Meter) gezielt so geplant und hergestellt werden, dass sie mechanische oder etwa optische Eigenschaften besitzen, die unstrukturierte Feststoffe prinzipiell nicht erreichen können.

Beispiele sind Tarnkappen, die Licht, Schall oder Wärme um Objekte herum leiten, Materialien, die kontra-intuitiv auf Druck und Scherung reagieren (auxetisch) oder Leichtbau-Nanowerkstoffe, die hohe spezifische Stabilität aufweisen (Kraft pro Fläche und Dichte).

Für das nun vorgestellte stabile Fachwerk, mit den weltweit, kleinsten Strukturen, nutzte Bauer zunächst die bewährte 3-D-Laserlithografie. Laserstrahlen härten computergesteuert die gewünschte mikrometergroße Struktur in einem Photolack aus.

Die Auflösung des Verfahrens erlaubt es allerdings nur, Streben von rund 5-10 Mikrometer Länge und einem Mikrometer Durchmesser zu erstellen. Im anschließenden Schritt wird die Struktur mittels Pyrolyse geschrumpft und verglast. Damit wird erstmals bei der Herstellung mikrostrukturierte Fachwerke Pyrolyse genutzt:

Das Objekt wird in einem Vakuum-Ofen Temperaturen von rund 900 Grad Celsius ausgesetzt, wodurch die chemischen Bindungen sich neu orientieren. Dabei entweichen alle Elemente aus dem Lack außer dem Kohlenstoff, welcher in seiner ungeordneten Form als Glaskohlenstoff in der geschrumpften Fachwerkstruktur zurückbleibt. Die gewonnenen Strukturen setzen die Forscher mit einem Stempel unter Druck und testeten so ihre Stabilität.

„Die Ergebnisse zeigen, dass die Belastbarkeit des Fachwerks sehr nahe an der theoretisch Möglichen und weit über der von unstrukturiertem glasartigem Kohlenstoff liegt“, berichtet Prof. Oliver Kraft, Mitautor der Studie. Er war bis Ende letzten Jahres Leiter des Instituts für Angewandte Materialien des KIT und ist seit diesem Jahr Vizepräsident für Forschung des KIT. „Diamant ist noch der einzige Feststoff, der eine höhere spezifische Stabilität aufweist.“

Mikrostrukturierte Materialien dienen oft zur Isolation oder als Stoßdämpfer. Offenporige Stoffe können als Filter in der chemischen Industrie genutzt werden. Metamaterialien haben auch außergewöhnliche optische Eigenschaften, die in der Telekomunikation eingesetzt werden können. Glaskohlenstoff ist ein hochtechnologischer Werkstoff aus reinem Kohlenstoff, der glasartige keramische Eigenschaften mit denen des Graphits vereint. Er ist als Werkstoff in Elektroden von Batterien oder Elektrolyseanlagen interessant.

Approaching Theoretical Strength in Glassy Carbon Nanolattices, J. Bauer, A. Schroer, R. Schwaiger and O. Kraft, DOI 10.1038/nmat4561

Weitere Presseinformationen zu dem Thema:

https://www.kit.edu/kit/pi_2014_14594.php

https://www.kit.edu/kit/pi_2015_tarnkappe-koennte-solarzellen-effizienz-erhoehen...

https://www.kit.edu/kit/pi_2013_12589.php

Weiterer Kontakt:
Kosta Schinarakis, PKM – Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 400 Mitarbeiterinnen und Mitarbeitern sowie 24 500 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

Weitere Informationen:

https://www.kit.edu/kit/pi_2014_14594.php
https://www.kit.edu/kit/pi_2015_tarnkappe-koennte-solarzellen-effizienz-erhoehen...
https://www.kit.edu/kit/pi_2013_12589.php

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen
27.06.2017 | Fraunhofer IFAM

nachricht Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter
23.06.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive