Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf dem Weg zum Quantencomputer

10.05.2012
VolkswagenStiftung fördert materialwissenschaftliches Projekt unter
Leitung der JGU mit 550.000 Euro

Die VolkswagenStiftung fördert ein materialwissenschaftliches Gemeinschaftsprojekt der Universitäten Mainz und Osnabrück sowie des Forschungszentrums Jülich für drei Jahre und stellt dafür 550.000 Euro zur Verfügung.

Die entsprechende Bewilligung erhielten die Projektleiter, Prof. Dr. Angelika Kühnle und Dr. Wolfgang Harneit vom Institut für Physikalische Chemie der Johannes Gutenberg-Universität Mainz (JGU), im vergangenen März. Das Projekt baut auf einem ebenfalls von der VolkswagenStiftung geförderten Vorgängerprojekt auf, das vor Kurzem abgeschlossen wurde.

Gesamtziel der Projekte ist es, die Realisierbarkeit eines Quantencomputers auf der Basis von Elektronenspins zu demonstrieren. Mit Quantencomputern lassen sich theoretisch wesentlich effizienter Berechnungen anstellen als mit herkömmlichen, siliziumbasierten Computern. Allerdings sind die nötigen Materialien für eine alltagstaugliche Anwendung von Quantencomputern noch nicht gefunden worden.

Das Projektteam um Kühnle und Harneit verwendet für seine Untersuchungen spezielle Fullerene, fußballförmige Kohlenstoffmoleküle, in die jeweils ein Stickstoffatom gebettet ist. Der Elektronenspin dieser Stickstoffatome dient als Qubit, das Analogon eines Bits in der Quanteninformationstechnologie. Um diese Qubits auszulesen, platzieren die Wissenschaftler die Fullerene auf Diamanten mit sogenannten Stickstoff-Fehlstellen, die wiederum optisch ausgelesen werden. Die Strategie, Fullerene als Qubits einzusetzen, stammt ursprünglich von Wolfgang Harneit, der das erste Konzept dazu bereits im Jahr 2002 vorstellte.

Im ersten Projekt wiesen die Forscher nach, dass die Ergebnisse von Quantenberechnungen in Fullerenen über die Stickstoff-Fehlstellen in Diamanten ausgelesen werden können. Allerdings ordneten sich die Fullerene noch nicht so auf den Diamanten an, dass tatsächlich nachvollziehbare Berechnungen möglich geworden wären. Im zweiten Projekt wollen die Forscher die Fullerene nun in Kohlenstoff-Nanoröhrchen fixieren und diese dann auf den Diamanten platzieren. Die dadurch erreichbare Anordnung soll anschließend auch größere nachvollziehbare Quantenberechnungen ermöglichen.

„Wir arbeiten an einem in weiten Bereichen skalierbaren Quantencomputer, weil die Silizium-Technologie an ihre Grenzen stößt“, sagt Angelika Kühnle. „Ein Quantencomputer wäre ein komplett neues Design eines Rechners mit ungeahnten Kapazitäten.“ Das aktuelle Projekt mit dem Namen „Spin quantum computing based on endohedral fullerenes with integrated single-spin read-out via nitrogen vacancy centres in diamond“ wird wie sein Vorläufer durch die Initiative „Integration molekularer Komponenten in funktionale makroskopische Systeme“ der VolkswagenStiftung gefördert.

Angelika Kühnle ist mit ihren Forschungen maßgeblich am Cluster „Molecularly Controlled Non-Equilibrium“ (MCNE) der Universität Mainz beteiligt, das sich zurzeit in der abschließenden Auswahlrunde der Bundesexzellenzinitiative befindet.

Weitere Informationen:
Prof. Dr. Angelika Kühnle
Institut für Physikalische Chemie
Johannes Gutenberg-Universität Mainz
D 55099 Mainz
Tel. +49 6131 39-23930
Fax +49 6131 39-53930
E-Mail: kuehnle@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.uni-mainz.de/FB/Chemie/Kuehnle

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

„Molekularer Schraubstock“ ermöglicht neue chemische Reaktionen

23.02.2018 | Biowissenschaften Chemie

Internationale Forschungskooperation will Altersbedingte Makuladegeneration überwinden

23.02.2018 | Biowissenschaften Chemie

Workshop zu flexiblen Solarzellen und LEDs auf der Energiemesse „New Energy“

23.02.2018 | Seminare Workshops

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics