Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf dem Weg zum Quantencomputer

10.05.2012
VolkswagenStiftung fördert materialwissenschaftliches Projekt unter
Leitung der JGU mit 550.000 Euro

Die VolkswagenStiftung fördert ein materialwissenschaftliches Gemeinschaftsprojekt der Universitäten Mainz und Osnabrück sowie des Forschungszentrums Jülich für drei Jahre und stellt dafür 550.000 Euro zur Verfügung.

Die entsprechende Bewilligung erhielten die Projektleiter, Prof. Dr. Angelika Kühnle und Dr. Wolfgang Harneit vom Institut für Physikalische Chemie der Johannes Gutenberg-Universität Mainz (JGU), im vergangenen März. Das Projekt baut auf einem ebenfalls von der VolkswagenStiftung geförderten Vorgängerprojekt auf, das vor Kurzem abgeschlossen wurde.

Gesamtziel der Projekte ist es, die Realisierbarkeit eines Quantencomputers auf der Basis von Elektronenspins zu demonstrieren. Mit Quantencomputern lassen sich theoretisch wesentlich effizienter Berechnungen anstellen als mit herkömmlichen, siliziumbasierten Computern. Allerdings sind die nötigen Materialien für eine alltagstaugliche Anwendung von Quantencomputern noch nicht gefunden worden.

Das Projektteam um Kühnle und Harneit verwendet für seine Untersuchungen spezielle Fullerene, fußballförmige Kohlenstoffmoleküle, in die jeweils ein Stickstoffatom gebettet ist. Der Elektronenspin dieser Stickstoffatome dient als Qubit, das Analogon eines Bits in der Quanteninformationstechnologie. Um diese Qubits auszulesen, platzieren die Wissenschaftler die Fullerene auf Diamanten mit sogenannten Stickstoff-Fehlstellen, die wiederum optisch ausgelesen werden. Die Strategie, Fullerene als Qubits einzusetzen, stammt ursprünglich von Wolfgang Harneit, der das erste Konzept dazu bereits im Jahr 2002 vorstellte.

Im ersten Projekt wiesen die Forscher nach, dass die Ergebnisse von Quantenberechnungen in Fullerenen über die Stickstoff-Fehlstellen in Diamanten ausgelesen werden können. Allerdings ordneten sich die Fullerene noch nicht so auf den Diamanten an, dass tatsächlich nachvollziehbare Berechnungen möglich geworden wären. Im zweiten Projekt wollen die Forscher die Fullerene nun in Kohlenstoff-Nanoröhrchen fixieren und diese dann auf den Diamanten platzieren. Die dadurch erreichbare Anordnung soll anschließend auch größere nachvollziehbare Quantenberechnungen ermöglichen.

„Wir arbeiten an einem in weiten Bereichen skalierbaren Quantencomputer, weil die Silizium-Technologie an ihre Grenzen stößt“, sagt Angelika Kühnle. „Ein Quantencomputer wäre ein komplett neues Design eines Rechners mit ungeahnten Kapazitäten.“ Das aktuelle Projekt mit dem Namen „Spin quantum computing based on endohedral fullerenes with integrated single-spin read-out via nitrogen vacancy centres in diamond“ wird wie sein Vorläufer durch die Initiative „Integration molekularer Komponenten in funktionale makroskopische Systeme“ der VolkswagenStiftung gefördert.

Angelika Kühnle ist mit ihren Forschungen maßgeblich am Cluster „Molecularly Controlled Non-Equilibrium“ (MCNE) der Universität Mainz beteiligt, das sich zurzeit in der abschließenden Auswahlrunde der Bundesexzellenzinitiative befindet.

Weitere Informationen:
Prof. Dr. Angelika Kühnle
Institut für Physikalische Chemie
Johannes Gutenberg-Universität Mainz
D 55099 Mainz
Tel. +49 6131 39-23930
Fax +49 6131 39-53930
E-Mail: kuehnle@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.uni-mainz.de/FB/Chemie/Kuehnle

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Quantenanomalien: Das Universum in einem Kristall
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Projekt »ADIR«: Laser bergen wertvolle Werkstoffe
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten