Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was Kniegelenke und Glasbläser gemeinsam haben

09.09.2014

Materialwissenschaftler erklären wie sich Flüssigkeiten zwischen zwei festen Flächen zu Glas umwandeln

Sei es die Gelenkflüssigkeit zwischen einzelnen Knochen oder Öl zwischen zwei Türscharnieren: um die Reibung zweier fester Flächen aneinander zu vermeiden, bedarf es eines Schmiermittels. Denn was mit dem bloßen Auge oft nicht erkennbar ist, wird unter dem Mikroskop deutlich: Oberflächen sind nie ganz glatt, sondern weisen keilartige Geometrien auf, die zwangsweise zur Reibung der Oberflächen aneinander führen (Abbildung 1).


Aufnahme einer Stahloberfläche . Treffen zwei solcher Oberflächen aufeinander, entsteht eine Vielzahl keilförmiger Zwischenräume. Diese bestimmen die Eigenschaften von Schmiermitteln.

Fatholla Varnik, Max-Planck-Institut für Eisenforschung GmbH


Wie kann man die Reibung zweier Oberflächen beeinflussen? Ein Team aus Wissenschaftlern gewinnt Erkenntnisse hierfür anhand moderner Computersimulationen.

Klaus Kroy

Dass der Platz zwischen diesen Flächen ausschlaggebend ist für die Eigenschaften solcher Schmiermittel, fanden in einer gemeinsamen Forschungsarbeit Physiker und Materialwissenschaftler am Düsseldorfer Max-Planck-Institut für Eisenforschung (MPIE), am ICAMS (Interdisciplinary Centre for Advanced Materials Simulation; frei übersetzt: Interdisziplinäres Zentrum für moderne Materialsimulation) der Ruhr-Universität Bochum und an den Universitäten Innsbruck, Erlangen und Tübingen heraus.

Zunächst untersuchten die Forscher mittels Computersimulationen und theoretischen Vorhersagen Flüssigkeiten zwischen zwei angrenzenden parallelen harten Platten und konnten feststellen, dass die Eigenschaften einer so eingegrenzten Flüssigkeit stark vom Plattenabstand abhängen, wenn dieser nur wenige Teilchen umfasst.

Im Falle amorpher Materialien - das sind Materialien, deren Atome in einer ungeordneten Struktur vorliegen - kann die durch die Platten verursachte, geometrische Einschränkung zu einem Übergang von einem flüssigen in einen festen und brüchigen Zustand führen. Beschränkt man den Abstand weiter, kehrt sich der Prozess um und man erhält wieder eine Flüssigkeit.

Diese Um- bzw. Rückwandlung ist wiederholbar und hängt sowohl vom Durchmesser des Plattenabstandes als auch vom äußeren Druck ab. Solche Übergänge von Materialien von einem Zustand in einen anderen werden als Phasenumwandlung bezeichnet. Materialien, die die oben beschriebene Phasenumwandlung durchlaufen, sind Gläser.

Genauso wie ein Glasbläser durch sehr schnelles Abkühlen einen flüssigen oder gasförmigen Stoff in festes Glas umwandeln kann, so zeigt die Forschungsarbeit, dass auch geometrische Veränderungen, wie die Änderung des Raumes zwischen zwei festen Stoffen, Einfluss auf die Flüssigkeit beziehungsweise das Schmiermittel im Zwischenraum haben können.

Die Forschungsarbeit zeigt erstmals, dass bei keilartigen Geometrien flüssige und glasartige Zustände, sogenannte Phasen, gleichzeitig nebeneinander existieren, wenn der externe Druck hoch genug ist. Mittels moderner Computersimulationen konnten Aussagen über Zwischenräume von nur wenigen Teilchenlagen getroffen werden, was besonders interessant für Anwendungen in der Mikro- und Nanotechnologie ist.

Während die Untersuchung solch kleiner Zwischenräume vormals dadurch begrenzt war, dass sich Flüssigkeiten durch derart starke Begrenzungen kristallisieren, das heißt, dass deren atomare Struktur von unregelmäßigen, amorphen Mustern in kristalline und somit geordnete Muster übergeht, konnten die Wissenschaftler dieses Problem durch die Einführung verschiedener Partikelgrößen überwinden.

„Das ist der Anfang einer Reihe von Entdeckungen“, so Dr. Fathollah Varnik, wissenschaftlicher Gruppenleiter am ICAMS. „Die theoretischen Erkenntnisse unserer Forschungsarbeit öffnen den Weg für neuartige Anwendungen im Maschinenbau, in der Nanotechnologie, und sogar im medizinischen Bereich, zum Beispiel für Endoprothesen.“ Die Berücksichtigung der Reibungsprozesse kann zur Energieeinsparung und längerer Lebensdauer eines Werkstücks führen, indem Verschleiß und Abrieb verringert werden.

Publikation:
Mandal et al, Nature Communications 5, 4435 (2014).

Weitere Informationen:

http://www.mpie.de

Yasmin Ahmed Salem | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum
07.12.2016 | Technische Universität Graz

nachricht Bioabbaubare Polymer-Beschichtung für Implantate
06.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie