Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Umformsimulationen - Virtuelles Labor: Schnell, flexibel und genau

04.07.2017

Blechwerkstoffe werden bei der Umformung häufig bis an ihre Grenzen belastet. Wie weit man in der Produktion gehen kann, wird mit Computer-simulationen getestet. Doch die Simulation ist nur so genau wie die Daten, die man ihr zugrunde legt. Fraunhofer-Wissenschaftlerinnen und Wissenschaftler haben jetzt ein virtuelles Versuchslabor entwickelt, mit dem beliebige Belastungszustände für metallische Materialien untersucht und präzise werkstoffmechanische Daten ermittelt werden können.

Die mechanischen Eigenschaften von Blechwerkstoffen sind richtungsabhängig: Ihr Verformungsverhalten und ihre Festigkeit unterscheiden sich stark je nach der Betrachtungsrichtung, zum Beispiel in Walzrichtung oder quer dazu. Daher sind zahlreiche und aufwendige Belastungsversuche notwendig, um die benötigten Materialdaten zu erhalten. Auf deren Grundlage kann das Verhalten von Blechwerkstoffen bei der Umformung vorhergesagt werden.


© Foto Fraunhofer IMW

Von den experimentell ermittelten Eingangsdaten über das virtuelle Labor zur Bereitstellung von Materialkarten für die Bauteilsimulation.

Klassische Versuche im Labor sind zeit- und kostenintensiv. Für jeden Belastungszustand sind neue Versuchsaufbauten und Materialproben nötig. Zudem lassen sich bei Blechwerkstoffen nicht alle Belastungszustände untersuchen, obwohl sie für die Computersimulation des Herstellungsprozesses von Bauteilen wichtig wären.

Wenn es beispielsweise darum geht, das Verhalten von Blechwerkstoffen in Richtung ihrer Dicke zu bestimmen, stoßen herkömmliche Versuche an ihre Grenzen: Die ein bis zwei Millimeter der Blechdicke sind zu wenig, um in dieser Richtung Proben für einen Zugversuch präparieren zu können.

Zugversuche in Blechdickenrichtung problemlos möglich

»In unserem virtuellen Labor sind zum Beispiel Zugversuche in Blechdickenrichtung problemlos möglich«, sagt Dr. Alexander Butz, Projektleiter in der Gruppe Umformprozesse am Fraunhofer IWM. »Auch alle anderen Belastungszustände lassen sich schnell und flexibel testen. So erhalten Bauteilhersteller aus der Blechumformung viel detailliertere Materialdaten.«

Dafür erstellen Butz und sein Team zunächst mit Hilfe von wenigen realen Experimenten ein Simulationsmodell der Mikrostruktur des Werkstoffes, mit dem die physikalischen Mechanismen bei einer Verformung bis in die Kristallstruktur beschrieben werden.

Damit können alle gewünschten Versuche im Computer generiert und zuverlässige Rückschlüsse auf die makroskopischen mechanischen Eigenschaften des Werkstoffs gezogen werden. »Die Methode ist bekannt. Neu ist jedoch, dass wir einen automatisierten Workflow entwickelt haben, der die Versuche zeitsparend virtuell ablaufen lässt«, erklärt Butz.

Weil sehr viele virtuelle Versuche in kurzer Zeit durchgeführt werden und das zugrundeliegende Mikrostrukturmodell sehr präzise ist, kann mit den Ergebnissen aus dem virtuellen Labor die sogenannte Materialkarte eines Werkstoffs deutlich genauer beschrieben werden als mit klassischen Versuchen.

Die virtuell ermittelten Daten können dabei von Bauteilherstellern in gleicher Weise weiterverarbeitet werden wie experimentell gewonnene Daten: Neben den Simulationen für die Bauteilproduktion auch für Simulationen zur Vorhersage des Bauteilverhaltens und der Lebensdauer während seiner Benutzung.

Kritische Stellen in der Mikrostruktur können gezielt untersucht werden

Ein weiterer Vorteil: »Kritische Stellen, an denen das Bauteil in der Produktion häufig beschädigt wird, können herausgegriffen und die Mikrostruktur wie mit einem virtuellen Mikroskop gezielt untersucht werden. So erhalten wir Hinweise darauf, wie sich der Bearbeitungsprozess verbessern lässt«, sagt Butz.

Besonders interessant ist das virtuelle Versuchslabor für die Leichtbau-Industrie, weil sie mit möglichst wenig Material arbeiten will – entsprechend stark ist dessen Beanspruchung. »Generell ist unsere Entwicklung für alle spannend, die sehr genaue Eingangsdaten für die Prozesssimulation und Bauteilauslegung benötigen, zum Beispiel für Bauteilhersteller der Automobil- oder Luftfahrtindustrie oder in der additiven Fertigung.«

Kontakt

Katharina Hien

Fraunhofer-Institut für Werkstoffmechanik IWM
Wöhlerstr. 11
79108 Freiburg

Telefon +49 761 5142-154

Fax +49 761 5142-510

Katharina Hien | Fraunhofer Forschung Kompakt
Weitere Informationen:
https://www.fraunhofer.de/de/presse/presseinformationen/2017/juli/virtuelles-labor-schnell-flexibel-und-genau.html

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik