Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

UDE-Forscher ermöglicht druckbare Halbleiter - Aus der Tablette in den Fernseher

27.07.2011
Heutige TFT-Displays – beispielsweise Fernseher – sind in ihrer Herstellung noch recht teuer und können nur mithilfe stark umweltschädlicher Gase produziert werden. Dr. Simon Bubel vom Center for Nanointegration (CeNIDE) an der Universität Duisburg-Essen (UDE) hat eine Alternative gefunden, den entscheidenden Bestandteil des Transistors herzustellen. Die Idee stammt aus der Medizin.

Bei der klassischen Herstellung von thin-film transistors (TFT), zu Deutsch „Dünnschichttransistoren“, werden Gase in amorphes Silizium umgewandelt. Bei diesen Gasen handelt es sich vor allem um hochexplosive Silane, die bei Freisetzung giftige Stoffe erzeugen. Die Technologie ist zudem vergleichsweise teuer, daher forscht man seit Längerem an Alternativen.

Um das Silizium zu ersetzen, bietet sich das ausreichend vorhandene, transparente und gesundheitlich unbedenkliche Zinkoxid (ZnO) an. Doch hatte das bisher einen ärgerlichen Nachteil: Ionisierter Sauerstoff aus der Luft lagert sich aufgrund der Coulomb’schen Anziehung an die Oberfläche des ZnO an und verändert dessen Leitfähigkeit. Da die als Halbleiter fungierende Zinkoxidschicht in TFTs nur rund 10 Nanometer dick ist – also 10.000-mal dünner als ein durchschnittliches menschliches Haar – besteht sie quasi nur aus Oberfläche.

Eine veränderte Leitfähigkeit derselben ist hierbei natürlich fatal: „Bei im Fernseher eingesetzten TFTs könnte das beispielsweise dazu führen, dass sich die Bildhelligkeit verändert, je nachdem, ob gerade eine Schlechtwetterfront im Anmarsch ist oder wir ein stabiles Hoch haben“, erklärt Dr.-Ing. Simon Bubel. Als Halbleiter in TFTs eingesetzt, soll ZnO aber genau das bleiben: ein Halbleiter. Hier lag bisher die Herausforderung.

Weniger umweltschädlich, druckbar und leistungsfähiger
Nun entdeckte Bubel die Lösung des Problems in einer ganz anderen Branche: Polyvinylpyrrolidon, kurz PVP, wird in der Medizin unter anderem als Bindemittel in Tabletten, als Stabilisator in Augentropfen und in Wundsalben eingesetzt. Mischt man rund 25 Nanometer große Zinkoxidpartikel mit PVP und einem Lösungsmittel, so entsteht eine gleichmäßige Dispersion, die sich zu dünnen Halbleiterschichten ausdrucken lässt. Das teurere und energieintensive „Sputtern“, bei dem die ZnO-Atome durch Beschuss mit energiereichen Ionen zunächst in die Gasphase übergehen müssen, entfällt so ganz. Zudem setzt sich das PVP ausgerechnet an jene Kristalloberflächen des ZnO, die mit dem Luftsauerstoff reagieren würden. Damit verhindert es die Bildung der atmosphärischen Adsorbate und stabilisiert so die Halbleitereigenschaften der Schicht.

Mit seiner Entdeckung hat der 32-jährige Bubel Zinkoxid-Halbleiter mehr als konkurrenzfähig gegenüber Silizium-Transistoren gemacht. Denn neben der deutlich besseren Umweltbilanz in der Herstellung sind ZnO-TFTs auch deutlich leistungsfähiger: Bisher leuchten Pixel in Displays nicht eigenständig, sondern werden von ihren Transistoren entweder transparent oder lichtundurchlässig geschaltet, sodass Licht aus einer Hintergrundbeleuchtung hindurchfällt oder eben nicht. Für deutlich dünnere und günstigere Displays arbeitet die Forschung daher an selbstleuchtenden Pixeln. Die klassische Silizium-Technologie stößt hierbei schon früh an ihre Grenzen, denn sie transportiert nicht genug Strom – wohl aber die Zinkoxid-Transistoren, deren Elektronenbeweglichkeit bis 200-mal höher ist als die der Silizium-Varianten.

Es zeichnet sich also ab, dass Bubels Erkenntnisse in Zukunft über die Display-Technologie hinaus neue Möglichkeiten eröffnen werden. Seine Forschungsergebnisse hat er soeben im „Journal of Materials Science“ publiziert (DOI 10.1007/s10853-011-5757-4).

Weitere Informationen:
CeNIDE, Birte Vierjahn, Tel. 0203/379-1456, birte.vierjahn@uni-due.de

Beate Kostka | idw
Weitere Informationen:
http://www.uni-due.de

Weitere Berichte zu: Display Fernseher Halbleiter Leitfähigkeit Nanometer PVP Pixel Silizium TFT Tablette Transistor ZnO nanowires

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics