Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Selbstheilender Lack: UV gegen Kratzer

21.04.2011
Polymer-Material kann Oberflächenschäden reparieren

In Zukunft kann eine UV-Lampe ausreichen, um Kratzer im Autolack verschwinden zu lassen. Denn Wissenschaftler hat ein Polymermaterial entwickelt, das unter ultravioletten Licht Oberflächenschäden repariert.

Wie die Forscher des Adolphe Merkle Instituts (AMI) der Universität Freiburg und US-Kollegen im Magazin Nature berichten, ist dieser Selbstheilungsmechanismus schnell und effizient. Daher ortet das Team großes Anwendungspotenzial nicht nur für Lacke in der Automobilindustrie, sondern beispielsweise auch für Bodenbeschichtungen oder in der Möbelindustrie.

Metallischer Leim

"Diese Polymere haben einen Napolen-Komplex: Sie sind eigentlich sehr klein, verhalten sich aber, als wären sie groß", erklärt Stuart Rowan, Professor für Makromolekularwissenschaften und Direktor des Instituts für Advanced Materials der Case Western Reserve University http://www.case.edu . Denn es handelt sich nicht wie bei herkömmliche Polymeren um langen Molekülketten mit tausenden Atome. Vielmehr verbinden sich kleinere Molekülbausteine mithilfe von Metall-Ionen als eine Art "molekularer Leim" zu langen Ketten.

"Dank dieser molekularen Beschaffenheit sind die Materialien in der Lage, unter UV-Strahlung ihre Eigenschaften zu verändern", erklärt Christoph Weder, Professor für Polymerchemie und Materialien und Direktor des AIM. Konkret löst sich so der metallische Leim und das Material verflüssigt sich. Hört die UV-Bestrahlung auf, bilden sich neue Ketten, wobei Kratzer ähnlich wie Schnittwunden auf der Haut verschwinden. Dazu ist eine starke UV-Lampe erforderlich. "Sonnenlicht allein reicht bislang nicht aus", sagt Gina Fiore, Gruppenleiterin im Bereich Polymerchemie und Materialien am AIM, auf Nachfrage von pressetext.

Großes Potenzial

Im Prinzip würde es für den Selbstheilungseffekt ausreichen, das Material zu erhitzen. "Indem wir Licht verwenden, haben wir aber mehr Kontrolle. Das erlaubt uns, gezielt Schäden zu behandeln und den Rest des Materials unberührt zu lassen", betont Mark Burnworth, Doktorand an der Case Western. Genau das macht den Ansatz für die praktische Anwendung besonders interessant. Noch dazu konnten die Forscher in Test mehrmals Kratzer an der gleichen Stelle einer Oberfläche verschwinden lassen.

Bislang hat das Team mit eigens gefertigten Materialen im Labor gearbeitet, doch sollte der Ansatz mit bestimmten kommerziell verfügbaren Polymeren funktionieren. Daher sind die Forscher zuversichtlich, dass selbstheilende Beschichtungen relativ günstig realisierbar wären. Allerdings ist es noch zu früh um abzuschätzen, wann die Materialien tatsächlich in industriellem Maßstab gefertigt werden und somit in den Handel kommen.

YouTube-Video zum Funktionsprinzip: http://www.youtube.com/watch?v=h-fka0wfY8w

Thomas Pichler | pressetext.redaktion
Weitere Informationen:
http://www.am-institute.ch

Weitere Berichte zu: AIM Ketten Lack Oberflächenschäden Polymerchemie Polymere UV-Lampe

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen