Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schlangenhaut gegen den Verschleiß

16.07.2014

Quietschende Bremsen, ratternde Scheibenwischer, abgefahrene Reifen: Verschleiß technischer Bauteile macht uns nicht nur in unserem persönlichen Alltag zu schaffen.

Mit einer künstlichen Schlangenhaut von der Christian-Albrechts-Universität zu Kiel (CAU) könnten wartungsbedingte Produktionsausfälle sowie teure und umweltschädliche Schmiermittel zukünftig Geschichte sein. Ihre Ergebnisse veröffentlichten die Kieler Forschenden vor kurzem in dem Fachjournal Beilstein Journal of Nanotechnology.


Millionen Jahre Evolution passten die Kalifornische Kettennatter perfekt an die Bewegung ohne Extremitäten an.

Foto/Copyright: Martina Baum

„Schlangen bewegen sich seit Millionen von Jahren ohne Extremitäten fort“, weiß Dr. Martina Baum. Die Forscherin der CAU mit einem Abschluss im seltenen Studiengang Technische Biologie, Universität Stuttgart, hat sich genau deshalb die Oberfläche von Schlangenhaut genauer angesehen.

Und nicht nur das: In ihrer Studie berichten Baum und ihre Kollegen Professor Stanislav N. Gorb und Lars Heepe aus der Arbeitsgruppe Funktionelle Morphologie und Biomechanik am Zoologischen Institut, wie sie die Eigenschaften von Bauchschuppen der Kalifornischen Kettennatter auf ein künstliches Material übertrugen. „Die Schlange ist in vielen verschiedenen Gegenden zuhause und bewegt sich auf unterschiedlichen Untergründen“, erklärt Baum ihre Wahl der Art. „Das macht sie sehr interessant für unsere Grundlagenforschung.“

Bei der durch Schlangen inspirierten mikrostrukturierten Polymeroberfläche, kurz SIMPS, und verschiedenen anderen ähnlichen Oberflächen analysierten die Forschenden deren Reibungs- und insbesondere deren „Stick-Slip-Verhalten“ (oder auch Ruckgleiten).

Dieses Phänomen tritt immer dann auf, wenn zwei Festkörper übereinander hinweg gleiten. Dabei entstehen Vibrationen: im großen Maßstab zum Beispiel bei Erdbeben, im mikroskopisch kleinen Maßstab eben bei quietschenden Bremsen. Neben unerwünschten Geräuschen sorgt es ebenfalls für einen erhöhten Materialverschleiß.

Sowohl ein Abdruck der echten Schlangenhaut als auch die SIMPS zeigten in den Untersuchungen ein reduziertes Ruckgleiten. „Wir konnten außerdem zeigen, dass es keinen einfachen Zusammenhang zwischen Reibungskoeffizient und Ruckgleiten gibt“, berichtet Martina Baum. Der Reibungskoeffizient spiegelt das Verhältnis von Reibungskraft und Anpresskraft zwischen zwei Körpern wider.

Das verminderte Auftreten des Ruckgleitens bei Schlangenhaut und SIMPS lasse darauf schließen, so die Forschenden, dass die Bauchschuppen von Schlangen nicht nur reibungsoptimiert, sondern auch abriebminimiert sind, um länger intakt zu bleiben. Technische Polymeroberflächen, die durch Reibung beansprucht werden, könnten von den Erkenntnissen profitieren und nach Vorbild der Schlangenhaut verbessert werden.

Martina Baum wechselte nach der Studie von der Zoologie in die Kieler Materialwissenschaften in die Arbeitsgruppe Funktionale Nanomaterialien. Dort ist ihre Kombination von biologischem und technischem Wissen sehr gefragt. Planungen, die Forschung in diesem Bereich, basierend auf den Erkenntnissen aus dem Schlangenhaut-Projekt fortzuführen, gibt es auch schon.

Diese Forschungsarbeit wurde im Rahmen des BIONA Förderprogramms (BMBF 01 RB 0812A) des Bundesministeriums für Bildung und Forschung durchgeführt. Dieses Projekt war eine Kollaboration zwischen Forschern der Christian-Albrechts Universität zu Kiel, der Rheinischen Friedrich-Wilhelms-Universität Bonn und dem Industriepartner Leonhard Kurz Group Stiftung & Co (Fürth, Germany).

Originalveröffentlichung:
Baum, J. M., Heepe, L. und Gorb, S. N., 2014, Friction behavior of a microstructured polymer surface inspired by snake skin, Beilstein Journal of Nanotechnology, 5, 83-97, doi: 10.3762/bjnano.5.8

Abbildungen stehen zum Download bereit:
http://www.uni-kiel.de/download/pm/2014/2014-226-1.jpg
Bildunterschrift: Forscherin Martina Baum untersuchte die Haut der Kalifornischen Kettennatter und entwickelte mit ihren Erkenntnissen ein reibungsarmes Polymermaterial.
Foto/Copyright: Schimmelpfennig/CAU

http://www.uni-kiel.de/download/pm/2014/2014-226-2.jpg
Bildunterschrift: Millionen Jahre Evolution passten die Kalifornische Kettennatter perfekt an die Bewegung ohne Extremitäten an.
Foto/Copyright: Martina Baum

http://www.uni-kiel.de/download/pm/2014/2014-226-3.jpg
Bildunterschrift: Schlangenhaut (Exuvie) einer Kalifornischen Kettennatter
Foto/Copyright: Schimmelpfennig/CAU

http://www.uni-kiel.de/download/pm/2014/2014-226-4.jpg
Bildunterschrift: Vorbild für verbesserte technische Bauteile: die Kalifornische Kettennatter
Foto/Copyright: Tribological Letters

http://www.uni-kiel.de/download/pm/2014/2014-226-5.jpg
Bildunterschrift: Von der Schlangenhaut zur Schlangen-inspirierten mikrostrukturierten Polymeroberfläche (SIMPS): a) Lampropeltis getula californiae, die Kalifornische Kettennatter; b) Rasterelektronenmikroskopische Aufnahme einer Bauchschuppe von L. g. californiae; c) Rasterelektronenmikroskopische Aufnahme der von Schlangen inspirierten mikrostrukturierten Polymeroberfläche – SIMPS. Maßstabsbalken: 10 μm. 3-dimensionale Aufnahmen d) der Schlangenhaut der Kalifornischen Kettennatter und e) SIMPS basierend auf Daten aus dem Rasterkraftmikroskop
Foto/Copyright: Martina Baum, Beilstein Journal of Nanotechnology

Kontakt:
Prof. Dr. Stanislav Gorb
Spezielle Zoologie
Zoologisches Institut
Tel.: 0431/880 -4513
E-Mail: sgorb@zoologie.uni-kiel.de

Dr. Martina J. Baum
Funktionale Nanomaterialien
Institut für Materialwissenschaft
Tel.: 0431/880-6149
E-Mail: marb@tf.uni-kiel.de

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von Hefe für Demenzerkrankungen lernen

22.02.2018 | Biowissenschaften Chemie

Sektorenkopplung: Die Energiesysteme wachsen zusammen

22.02.2018 | Seminare Workshops

Die Entschlüsselung der Struktur des Huntingtin Proteins

22.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics