Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Saar-Forscher entwickeln Feder aus metallischem Glas für hochwertige Uhren

11.12.2012
Uhren sind mehr als bloße Zeitmesser, sie sind auch Schmuckstücke, für die viele bereit sind, tiefer in die Tasche zu greifen.

Vor allem die Mechanik und die winzigen Bauteile der hochwertigen Uhren interessiert viele Technikbegeisterte: Kleine Zahnrädchen, die exakt ineinandergreifen, oder ein filigranes Federwerk, das dafür sorgt, dass die Uhrzeiger die genaue Zeit anzeigen.


Werkstoffwissenschaftler der Saar-Uni haben gemeinsam mit dem Uhrenhersteller Nivrel eine besondere Feder aus einer speziellen Legierung für hochwertige Uhren entwickelt (im Bild: der alte Mechanismus).

Foto: Universität des Saarlandes/Lehrstuhl für metallische Werkstoffe


Die etwa 3 Zentimeter lange Feder besteht aus metallischem Glas (im Bild: der neue Mechanismus).

Foto: Universität des Saarlandes/Lehrstuhl für metallische Werkstoffe

Um beim Uhrwerk mit der Zeit zu gehen, setzt auch das traditionelle Handwerk auf Neuerungen. So arbeiten Werkstoff-Forscher um Professor Ralf Busch von der Saar-Uni mit dem Uhrenhersteller Nivrel zusammen. Gemeinsam haben Forscher und Uhrmacher eine Feder aus einer speziellen Legierung für hochwertige Uhren entwickelt.

Bei einem sogenannten Repititionsmechanismus handelt es sich um ein Schlagwerk, das auf Knopfdruck die aktuelle Uhrzeit hörbar wiedergibt. „Dieser Mechanismus geht auf die Zeit zurück, in der es noch kein elektrisches Licht gab“, erklärt Ralf Busch, Professor für metallische Werkstoffe an der Universität des Saarlandes. „Um nachts die Uhrzeit abzulesen, musste man erst einmal eine Kerze anzünden. Daher entwickelte man diesen Mechanismus, der die Uhrzeit als Geräusch angibt.“
Ertönen zum Beispiel elf langsame Schläge und zwei kurze, bedeutet das, dass es 11 Uhr und 10 Minuten ist. Die langen Schläge geben die Stunden an, die kurzen jeweils Fünf-Minuten-Intervalle. Dabei läuft im Uhrwerk Folgendes ab: Man drückt auf einen Knopf, der mit einer Feder verbunden ist. Diese Feder wiederum aktiviert einen Klöppel, der eine große Feder in Gang setzt. Diese erzeugt durch Schwingungen am Gehäuse der Uhr Schläge, die so die Zeit angeben. Dieses Schlagwerk wird heute – in Zeiten des elektrischen Lichts – zwar nicht mehr benötigt, aus nostalgischen Gründen wird es aber immer noch in viele mechanische Uhren eingebaut.

Bei der Kooperation zwischen den Forschern der Saar-Uni und dem Saarbrücker Uhrenhersteller Nivrel ging es darum, mit einem neuen Werkstoff eine bessere Feder für dieses Schlagwerk zu entwickeln. „Bei herkömmlichen Stahlfedern war es bislang relativ mühsam, den Druckknopf zu betätigen“, weiß William Hembree. Der Amerikaner arbeitet bereits seit 2008 bei Professor Busch und war maßgeblich an der Entwicklung dieser Feder beteiligt. „Wir haben an einer Feder aus einer speziellen Metalllegierung gearbeitet“, sagt Hembree weiter. „Sie ist leichter zu bewegen und kann zudem die Druckenergie besser speichern.“ Diese Legierung, für die die Saarbrücker Forscher ein Patent besitzen, besteht aus Zirkonium, Kupfer, Aluminium und Niob. Sie ist fest wie Stahl, aber formbar wie Kunststoff. Diese Eigenschaften, die auch die neue Feder besitzt, sorgen letztlich dafür, dass der Druckknopf leichter betätigt werden kann.

Hintergrund:
Ralf Busch und seine Arbeitsgruppe forschen an der optimalen Zusammensetzung metallischer Legierungen, um Werkstoffe mit idealen Eigenschaften zu entwickeln. Das Hauptaugenmerk der Wissenschaftler liegt hierbei vor allem auf den metallischen Gläsern. „Als Glas bezeichnet man eingefrorene Flüssigkeiten“, erklärt Busch. „Kühlt etwa Silikatschmelze normal ab, dann entsteht Glas. Im Glas liegen die Atome amorph, also ungeordnet, vor. Bei sehr langsamer Abkühlung wird die Schmelze dagegen zu Quarzkristall, in dem sich die Bausteine zu einem regelmäßigen Gitter angeordnet haben.“ Glas lässt sich nicht nur aus Quarz herstellen, sondern auch aus einer ganz anderen Gruppe von Werkstoffen: aus Metallen. Metallschmelzen, die beim Abkühlen nicht kristallisieren, sondern zu einem Glas einfrieren, sind das Spezialgebiet des Saarbrücker Werkstoffwissenschaftlers.

Fragen beantwortet:
Prof. Dr. Ralf Busch
Lehrstuhl für metallische Werkstoffe
Tel. 0681 302-3208
E-Mail. r.busch(at)mx.uni-saarland.de

Melanie Löw | Universität des Saarlandes
Weitere Informationen:
http://www.uni-saarland.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum
07.12.2016 | Technische Universität Graz

nachricht Bioabbaubare Polymer-Beschichtung für Implantate
06.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie