Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

RUB-Ingenieure untersuchen Gefahren durch Wasserstoff in hochfesten Stählen

18.10.2011
… und wenn sich der Wasserstoff nicht nur im Tank befindet?
RUBIN Werkstoff-Engineering ist erschienen

Dass moderne Autos in Zukunft nicht nur Benzin, Diesel oder Autogas tanken, sondern mit emissionsarmem Wasserstoff betrieben werden sollen, ist seit einigen Jahren Ziel von Forschung und Entwicklung. Wasserstoff kann aber nicht nur Treibstoff, sondern auch problematisch sein: Seine Anwesenheit in hochfesten Stählen, aus denen moderne Karosserien gefertigt werden, kann ohne Vorwarnung zu Rissen führen, und diese wiederum zum Versagen von Bauteilen. Bochumer Forscher haben die Gefahren genauer untersucht und neue Stähle auf die Probe gestellt.

Über ihre Ergebnisse berichten sie in RUBIN Werkstoff-Engineering, der aktuellen Sonderausgabe des RUB-Wissenschaftsmagazins.

Den vollständigen Beitrag mit Bildern zum Herunterladen finden Sie im Internet unter: http://www.rub.de/rubin

Plötzlich und unerwartet: Wenn Wasserstoff Stahl sprengt

Dass Autos trotz Komfort- und Sicherheitszuwachs nicht immer schwerer werden, ist neuen Stählen zu verdanken. Hochfeste Mehrphasenstähle haben schon bei geringem Durchmesser eines Karosserieteils eine sehr hohe Festigkeit, und trotzdem noch Verformungsreserven, die bei einem Unfall dafür sorgen, dass sich das Teil verformt, nicht aber bricht. Durch Umformung während der Fertigung wächst die Festigkeit weiter. Dabei kommt aber auch eine Gefahr ins Spiel, die nur hochfeste Stähle betrifft: Gelangen Wasserstoffatome in den Stahl – sei es schon während der Herstellung oder später z.B. durch Luftfeuchtigkeit – kann es zur gefürchteten Wasserstoff induzierten Spannungsrisskorrosion kommen. Dabei treten ohne Vorwarnung Risse auf, das Bauteil versagt. Bisher lagen für moderne Stähle so gut wie keine Untersuchungen zu diesem Thema vor. Die RUB-Forscher um Prof. Dr. Michael Pohl und Dr.-Ing. Sebastian Kühn nahmen hochfeste Mehrphasenstähle unter die Lupe, immer mit der Frage im Hinterkopf: Ist der Effekt für den Autobau gefährlich?

Sorgenfrei im Autobau

Sie setzten verschiedene Stahlproben unter Wasserstoffeinfluss unterschiedlichen statischen Zugbelastungen aus. Die Zeit bis zum Versagen der Probe galt als Maß für die Wasserstoffempfindlichkeit. Trat nach langer Zeit kein Bruch auf, galt der Stahl als unempfindlich für die Wasserstoff induzierte Spannungsrisskorrosion. Die Forscher testeten verschiedene Beladungen mit Wasserstoff und erhielten so für jeden geprüften Stahl ein Schaubild, das seine Empfindlichkeit veranschaulicht. Daran können Autobauer ablesen, bis zu welcher Spannung ein Stahl eingesetzt werden darf, ohne dass die Rissbildung droht. Fazit: Bei im Autobau üblichen Belastungen von Bauteilen wären sehr hohe Wasserstoffgehalte im Stahl notwendig, um einen Riss zu induzieren – die Stähle sind weitgehend sorgenfrei im Autobau einsetzbar.

Theoretische Rechnungen helfen Gegenstrategien entwickeln

Forscher am Interdisciplinary Centre for Materials Simulation (ICAMS) gehen dem Treiben kleiner Atome in Stählen im Detail auf den Grund. Mit Hochleistungscomputern berechnen sie das Verhalten der Atome theoretisch für kleine Einheiten. Dank vergröberter Modelle können sie dann auch größere Stahlbereiche betrachten und Strategien entwickeln, die Schädigungsprozesse verhindern. Dafür kommen zum Beispiel verschiedene Legierungsatome in Frage, die für den Werkstoff „ungefährliche“ Positionen für kleine Atome attraktiver machen als „gefährliche“, an denen es schnell zu Rissen kommt.

Weitere Themen in RUBIN Werkstoff-Engineering

Im RUBIN Werkstoff-Engineering finden Sie außerdem folgen Themen: Blitzschnell verschleißbeständige Bauteile; Widerstandsfähig gegen Rost und Reibung: Pumpenzentrum kümmert sich um das allgegenwärtige Stiefkind der Forschung; Dem Zufall auf die Sprünge helfen: Entwicklung neuer Werkstoffe durch Hochdurchsatzexperimente mit Materialbibliotheken; Die Sonne Wasser spalten lassen; Wenn Superlegierungen versetzt werden; Zerreißprobe: Wie Hitze die Mikrostruktur von Stahl durcheinanderbringt; Geflochtene Implantate; Bei extremer Kälte dem Magnetfeld widerstehen; Leichter abheben; Heißer ist besser: Kraftwerke umweltschonender machen; Wie eine lebende Haut: Neue Korrosionsschutzschichten sollen Defekte selbstständig heilen; Vom Atom zum Werkstoff: Interdisziplinäre Materialsimulation zu leichten Elementen in Eisen und Stahl. RUBIN ist in der Stabsstelle Strategische PR und Markenbildung zum Preis von 5 Euro erhältlich und online unter http://www.rub.de/rubin

Weitere Informationen

Dr.-Ing. Sebastian Kühn, Institut für Werkstoffe der RUB, Lehrstuhl Werkstoffprüfung (Prof. Dr.-Ing. Michael Pohl), Tel. 0234/32-25921, E-Mail: kuehn@wtech.rub.de

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.rub.de/rubin

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics