Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Röntgenlicht zeigt Strukturschäden an Lithium-Ionen-Akkus

14.04.2015

Zu schnelles Laden von Lithium-Ionen-Akkus kann die Akkukapazität dauerhaft herabsetzen. Dabei werden Teile der Struktur des Energiespeichers zerstört und deaktiviert.

Derartige Strukturveränderungen hat DESY-Forscherin Dr. Ulrike Bösenberg mit ihrem Team an der Röntgenstrahlungsquelle PETRA III jetzt erstmals abgelichtet. In ihren Fluoreszenzuntersuchungen, die im aktuellen Heft des Fachblatts „Chemistry of Materials“ erscheinen (online vorab veröffentlicht), zeigen sich bereits nach wenigen Ladezyklen deutliche Schäden an der inneren Struktur des Akkumaterials, die bei langsamer Ladung nicht auftraten.


Nach 25 Schnellladezyklen zeigt die Mangan-Verteilung in der Elektrode deutliche Löcher.

Bild: Ulrike Bösenberg/DESY

Lithium-Ionen-Akkus sind sehr gebräuchlich, weil sie eine hohe Ladungsdichte haben. Typischerweise lässt nach 1000 Ladungen und Entladungen die Speicherkapazität deutlich nach. Ein vielversprechender Kandidat für eine neue Generation dieser Energiespeicher, vor allem wegen ihrer hohen Spannung von 4,7 Volt, sind sogenannte Lithium-Nickel-Manganoxid- oder LNMO-Spinell-Materialien. Die Elektroden bestehen aus Minikristallen, sogenannten Kristalliten, die mit Bindermaterial und leitendem Kohlenstoff zu dünnen Schichten verbunden werden.

Das Team um Bösenberg, zu dem auch Forscher der Universität Gießen, der Universität Hamburg und von der australischen Forschungsorganisation CSIRO gehören, untersuchte die negativen Elektroden dieser LiNi0.5Mn1.5O4-Verbindung an der Mikrofokus-Strahlführung P06 der Röntgenquelle PETRA III bei DESY. Mit Hilfe eines neuartigen Röntgen-Fluoreszenzdetektors konnten sie auf einen halben Mikrometer (millionstel Meter) genau die Verteilung von Nickel und Mangan über große Bereiche auf der Elektrode bestimmen. Aus Atomen dieser Übergangsmetalle ist das molekulare Trägergerüst der Akkuelektrode aufgebaut – ein relativ starres Kristallgitter, in das sich die Lithium-Ionen dann als bewegliche Ladungsträger ein- oder ausklinken können.

Bei ihren Untersuchungen setzten die Forscher verschiedene Akkuelektroden jeweils 25 Lade- und Entladezyklen mit drei verschiedenen Geschwindigkeiten aus und vermaßen die elementare Verteilung der Bestandteile in den Elektroden. Dabei stellten die Forscher fest, dass sich bei schneller Ladung die Mangan- und Nickel-Atome aus der Kristallstruktur lösen können. Sie beobachteten sogar richtige Löcher in der Elektrode mit bis zu 100 Mikrometern (0,1 Millimeter) Durchmesser. Die zerstörten Bereiche stehen dann nicht mehr für die Lithium-Speicherung zur Verfügung.

In ihren Untersuchungen mit der Röntgenfluoreszenzmethode machten sich die Forscher zunutze, dass Röntgenlicht chemische Elemente zur Fluoreszenz, der kurzzeitigen Aussendung von Strahlung, anregen kann. Die Wellenlänge oder Energie der Fluoreszenzstrahlung liefert dabei einen charakteristischen Fingerabdruck des jeweils ausstrahlenden chemischen Elements. So lässt sich die Verteilung der einzelnen Stoffe in der Elektrode genau ermitteln. Die Forscher nutzten hierfür einen neuartigen Fluoreszenzdetektor, von dem es in dieser Form weltweit nur zwei Exemplare gibt. Dieser „Maia“-Detektor, eine Entwicklung der CSIRO und des US-Forschungszentrums BNL, besteht aus fast 400 einzelnen Elementen, die die Fluoreszenzstrahlung der Probe einsammeln. Durch seine hohe Energieauflösung und Empfindlichkeit ist der Detektor in der Lage, mehrere chemische Elemente gleichzeitig zu lokalisieren.

Durch den feinen und hochintensiven Röntgenstrahl von PETRA III konnte die rund 2x2 Quadratmillimeter große Probenfläche auf einen halben Mikrometer genau abgetastet werden. Die Untersuchung jedes Punktes dauerte dabei lediglich eine tausendstel Sekunde. „Es ist das erste Mal, dass wir diese Inhomogenitäten mit so einer hohen Ortsauflösung über einen so großen Bereich lokalisieren konnten“, sagt Bösenberg. „Wir hoffen, die Effekte so besser zu verstehen und die Grundlage für bessere Energiespeicher zu schaffen.“

Rätselhaft ist noch, wo die herausgelösten Nickel- und Mangan-Atome bleiben – das wollen die Wissenschaftler in Folgeuntersuchungen herausfinden. „Es gibt deutliche Hinweise darauf, dass sich das herausgelöste Material zumindest teilweise an der Anode ablagert und so die Akkueigenschaften doppelt schädigt“, resümiert Bösenberg.

###

Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.

Originalveröffentlichung:
Correlation between Chemical and Morphological Heterogeneities in LiNi0.5Mn1.5O4 Spinel Composite Electrodes for Lithium-Ion Batteries Determined by Micro-X-ray Fluorescence Analysis, Ulrike Bösenberg, Mareike Falk, Christopher G. Ryan, Robin Kirkham, Magnus Menzel, Jürgen Janek, Michael Fröba, Gerald Falkenberg und Ursula E. A. Fittschen; Chemistry of Materials, 27 (7), 2015; DOI: 10.1021/acs.chemmater.5b00119

Weitere Informationen:

http://dx.doi.org/10.1021/acs.chemmater.5b00119 - Fachveröffentlichung in „Chemistry of Materials“

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen
27.06.2017 | Fraunhofer IFAM

nachricht Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter
23.06.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Umfangreiche Fördermaßnahmen für Forschung an Chromatin, Nebenniere und Krebstherapie

28.06.2017 | Förderungen Preise

Immunabwehr: Wie Proteine Membranbläschen zusammenbringen

28.06.2017 | Biowissenschaften Chemie

Das Auto lernt vorauszudenken

28.06.2017 | Maschinenbau