Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Röntgenlicht zeigt Strukturschäden an Lithium-Ionen-Akkus

14.04.2015

Zu schnelles Laden von Lithium-Ionen-Akkus kann die Akkukapazität dauerhaft herabsetzen. Dabei werden Teile der Struktur des Energiespeichers zerstört und deaktiviert.

Derartige Strukturveränderungen hat DESY-Forscherin Dr. Ulrike Bösenberg mit ihrem Team an der Röntgenstrahlungsquelle PETRA III jetzt erstmals abgelichtet. In ihren Fluoreszenzuntersuchungen, die im aktuellen Heft des Fachblatts „Chemistry of Materials“ erscheinen (online vorab veröffentlicht), zeigen sich bereits nach wenigen Ladezyklen deutliche Schäden an der inneren Struktur des Akkumaterials, die bei langsamer Ladung nicht auftraten.


Nach 25 Schnellladezyklen zeigt die Mangan-Verteilung in der Elektrode deutliche Löcher.

Bild: Ulrike Bösenberg/DESY

Lithium-Ionen-Akkus sind sehr gebräuchlich, weil sie eine hohe Ladungsdichte haben. Typischerweise lässt nach 1000 Ladungen und Entladungen die Speicherkapazität deutlich nach. Ein vielversprechender Kandidat für eine neue Generation dieser Energiespeicher, vor allem wegen ihrer hohen Spannung von 4,7 Volt, sind sogenannte Lithium-Nickel-Manganoxid- oder LNMO-Spinell-Materialien. Die Elektroden bestehen aus Minikristallen, sogenannten Kristalliten, die mit Bindermaterial und leitendem Kohlenstoff zu dünnen Schichten verbunden werden.

Das Team um Bösenberg, zu dem auch Forscher der Universität Gießen, der Universität Hamburg und von der australischen Forschungsorganisation CSIRO gehören, untersuchte die negativen Elektroden dieser LiNi0.5Mn1.5O4-Verbindung an der Mikrofokus-Strahlführung P06 der Röntgenquelle PETRA III bei DESY. Mit Hilfe eines neuartigen Röntgen-Fluoreszenzdetektors konnten sie auf einen halben Mikrometer (millionstel Meter) genau die Verteilung von Nickel und Mangan über große Bereiche auf der Elektrode bestimmen. Aus Atomen dieser Übergangsmetalle ist das molekulare Trägergerüst der Akkuelektrode aufgebaut – ein relativ starres Kristallgitter, in das sich die Lithium-Ionen dann als bewegliche Ladungsträger ein- oder ausklinken können.

Bei ihren Untersuchungen setzten die Forscher verschiedene Akkuelektroden jeweils 25 Lade- und Entladezyklen mit drei verschiedenen Geschwindigkeiten aus und vermaßen die elementare Verteilung der Bestandteile in den Elektroden. Dabei stellten die Forscher fest, dass sich bei schneller Ladung die Mangan- und Nickel-Atome aus der Kristallstruktur lösen können. Sie beobachteten sogar richtige Löcher in der Elektrode mit bis zu 100 Mikrometern (0,1 Millimeter) Durchmesser. Die zerstörten Bereiche stehen dann nicht mehr für die Lithium-Speicherung zur Verfügung.

In ihren Untersuchungen mit der Röntgenfluoreszenzmethode machten sich die Forscher zunutze, dass Röntgenlicht chemische Elemente zur Fluoreszenz, der kurzzeitigen Aussendung von Strahlung, anregen kann. Die Wellenlänge oder Energie der Fluoreszenzstrahlung liefert dabei einen charakteristischen Fingerabdruck des jeweils ausstrahlenden chemischen Elements. So lässt sich die Verteilung der einzelnen Stoffe in der Elektrode genau ermitteln. Die Forscher nutzten hierfür einen neuartigen Fluoreszenzdetektor, von dem es in dieser Form weltweit nur zwei Exemplare gibt. Dieser „Maia“-Detektor, eine Entwicklung der CSIRO und des US-Forschungszentrums BNL, besteht aus fast 400 einzelnen Elementen, die die Fluoreszenzstrahlung der Probe einsammeln. Durch seine hohe Energieauflösung und Empfindlichkeit ist der Detektor in der Lage, mehrere chemische Elemente gleichzeitig zu lokalisieren.

Durch den feinen und hochintensiven Röntgenstrahl von PETRA III konnte die rund 2x2 Quadratmillimeter große Probenfläche auf einen halben Mikrometer genau abgetastet werden. Die Untersuchung jedes Punktes dauerte dabei lediglich eine tausendstel Sekunde. „Es ist das erste Mal, dass wir diese Inhomogenitäten mit so einer hohen Ortsauflösung über einen so großen Bereich lokalisieren konnten“, sagt Bösenberg. „Wir hoffen, die Effekte so besser zu verstehen und die Grundlage für bessere Energiespeicher zu schaffen.“

Rätselhaft ist noch, wo die herausgelösten Nickel- und Mangan-Atome bleiben – das wollen die Wissenschaftler in Folgeuntersuchungen herausfinden. „Es gibt deutliche Hinweise darauf, dass sich das herausgelöste Material zumindest teilweise an der Anode ablagert und so die Akkueigenschaften doppelt schädigt“, resümiert Bösenberg.

###

Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.

Originalveröffentlichung:
Correlation between Chemical and Morphological Heterogeneities in LiNi0.5Mn1.5O4 Spinel Composite Electrodes for Lithium-Ion Batteries Determined by Micro-X-ray Fluorescence Analysis, Ulrike Bösenberg, Mareike Falk, Christopher G. Ryan, Robin Kirkham, Magnus Menzel, Jürgen Janek, Michael Fröba, Gerald Falkenberg und Ursula E. A. Fittschen; Chemistry of Materials, 27 (7), 2015; DOI: 10.1021/acs.chemmater.5b00119

Weitere Informationen:

http://dx.doi.org/10.1021/acs.chemmater.5b00119 - Fachveröffentlichung in „Chemistry of Materials“

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue Biotinte für den Druck gewebeähnlicher Strukturen
19.10.2017 | Forschungszentrum Jülich, Jülich Centre for Neutron Science

nachricht Was winzige Strukturen über Materialeigenschaften verraten
19.10.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise